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Using the continuum theory in the linear perturbation limit, the formation of static periodic
distortions (PD) is studied in a planar nematic sample under the action of crossed electric
(E) and magnetic (H) fields. In a nematic dielectric with positive dielectric and diamagnetic
anisotropies (g4 >0, ya>0), the wave vector of H induced PD depends on the tilt of H in a
plane normal to the initial director orientation n, when E is in the sample plane; change of
magnetic tilt may cause discontinuous changes in the wave vector. Similar results are obtained
when electrical conductivity is taken into account with hydrodynamic effects being assumed
absent. Calculations are extended to a study of PD in nematics with high elastic anisotropy
for different signs of ea and ya. When such materials have susceptibility anisotropies of
opposite sign, change in magnetic tilt may cause ‘re-entrant’ appearances of distortions. When
anchoring is weak enough, the saddle-splay elastic constant K»4 can influence the domain of
existence of PD. Possible effects of flexoelectricity as well as results for cylindrical geometry

are qualitatively discussed.

1. Introduction

The continuum theory [1-4] satisfactorily explains
many effects arising from the action of external magnetic
(H) and electric (E) fields on nematic samples. The
nematic director (n) can be uniformly oriented (along
no, say) in a sample by appropriate treatment of the
bounding planes; the surface treatment also determines
the director anchoring strength [5]. The planar (no
parallel to the sample planes) and the homeotropic (n,
normal to the sample planes) alignments are commonly
used. For simplicity, the rigid anchoring hypothesis is
frequently employed in theoretical calculations. H or E
either stabilizes or destabilizes n, depending upon the
sign of the relevant susceptibility anisotropy of the
material and the direction of the field relative to no.
The effect of simultaneous application of a stabilizing
and a destabilizing field along symmetry directions
(crossed field configuration) is also studied.

The application of H normal to n, leads to the
aperiodic or homogeneous distortion (HD) above a well
defined Fréedericksz threshold in materials with moder-
ate elastic anisotropy; the optical detection of HD helps
in the evaluation of the splay (K1), twist (K2) and bend
(K3) curvature (bulk) elastic constants if ya is known.
In nematics with high elastic anisotropy (e.g. high
molecular weight nematic or nematic close to the nem-
atic—smectic A transition), the distortion above a mag-
netic threshold may be periodic (PD) [6,7]. It can be

shown [6, 8] that when the elastic anisotropy is high
enough, the PD threshold is lower than the HD thresh-
old. Theoretical interpretations of the effects of H are
generally straightforward as the field is not appreciably
modified by the medium even in the presence of spatial
gradients of n.

In contrast to magnetic effects, the effects of E are far
more diverse, complex and interesting since E inside the
medium is strongly affected by director gradients [9],
flexoelectric polarization (P) [10], electrical conduc-
tivity, etc. A number of studies have been reported on
planar oriented samples [ 3, 4]. As the coupling between
P and E is linear, the influence of P can be greatly
reduced by using an a.c. field of sufficiently high fre-
quency. Under the action of a d.c. field, however, PD
occurs even in materials with low elastic anisotropy due
to flexoelectricity [11]. The variation of the principal
dielectric constants caused by an increase of the electric
frequency also leads to PD in some nematics [12].
When different director anchoring strengths are
imparted to the sample planes, even the magnitude of
the d.c. Fréedericksz threshold changes with the voltage
polarity [13]. An impure nematic has low electrical
conductivity whose anisotropy can be controlled by
different methods [ 3]. When such a material is subjected
to E, a variety of convective electrohydrodynamic instab-
ilities set in. Different mechanisms that cause these
instabilities have been theoretically identified [ 3,4, 14]
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taking explicit account of electrical conductivity, charge
injection, etc. Though dynamic effects generally accom-
pany the presence of conductivity, theoretical attempts
have been made to study the effect of conductivity on
static HD [9]. It should be interesting to extend these
studies to include static PD.

A number of effects have also been observed in
homeotropically aligned nematic samples with E
impressed in the sample plane. A d.c. field causes thresh-
oldless HD due to flexoelectricity in a weakly anchored
sample [15]. With strong anchoring, an a.c. field pro-
duces a first order Fréedericksz transition [16,17] in a
material (such as SCB) with positive susceptibility aniso-
tropies [18]. With an additional stabilizing H, PD
appears above a well defined threshold [17]. A non-
linear [ 19] and a linear [ 20] mathematical model have
been proposed to explain the electric PD threshold as a
dielectric effect. The analysis of [20] is mathematically
simpler and gives an insight into the instability mechan-
ism which comprises mainly the additional destabilizing
torques resulting from periodic electric perturbations.
Results for rigid anchoring [ 20] are in qualitative agree-
ment with the findings of reference [17].

The model of reference [20] has been extended [21]
to the study of PD in homeotropic samples of materials
(such as M1[22] and CCH-7[23]) having susceptibility
anisotropies of opposite signs, with E and H acting in
the sample plane; depending upon the material para-
meters, one can study either the electric or the magnetic
PD threshold. The PD threshold as well as the period-
icity wave vector depend strongly on the angle between
H and E [21]. The pretilt of n, away from the homeo-
tropic suppresses PD [24] so that only HD sets in
under the action of the destabilizing field. A transition
from PD to HD occurs due to the variation of field
strengths as well as that of the angle between the fields;
a variety of phase diagrams now results. This transition
is of second order for rigid anchoring [ 21], but becomes
discontinuous when the director is weakly anchored [25].

Close mathematical similarity exists between the gov-
erning equations for homeotropic and planar configura-
tions [ 1-4, 17]. It is, therefore, possible that PD of the
kind studied in [ 20, 21, 24, 25] may also be obtained as
a solution for planar no, in nematics with moderate
elastic anisotropy when E is impressed in the sample
plane. This provides the motivation to study the initial
planar orientation. So far, PD induced by elastic aniso-
tropy has been studied only in high molecular weight
materials with positive susceptibility anisotropies [ 6, §].
Such materials with opposite signs of susceptibility
anisotropies may also exist. The previously developed
mathematical models [8] can be extended to the study
of PD in such cases, especially with E impressed along
different symmetry directions with respect to mo. It

should be interesting to compare the phase diagrams
obtained for different materials.

Work referenced above concerns flat nematic samples
and defectless deformations involving bulk curvature
elastic constants. With the advent of polymer dispersed
liquid crystal (PDLC) displays (see [26] for a review),
a number of studies on singular nematic configurations
confined to cylindrical cavities have led to the determina-
tion of the (saddle—splay) surface elastic constant K»4 of
some nematics [27]. The effect of K4 on PD may be
considerable even in flat, sufficiently thin samples [28].
It should be interesting to study the influence of K24 on
PD for different field configurations in a flat sample
when the director anchoring is weak.

With the above motivation, the governing equations
are set up along with general boundary conditions in
§2. In § 3, results are presented for different deformations
under the rigid anchoring hypothesis with E acting in
the sample plane. These calculations are generalized to
the finite anchoring case in §4 with a brief summary of
possible effects of flexoelectricity. In §5, PD caused by
high elastic anisotropy is studied for different material
types with E impressed normal to the sample planes.
These results are contrasted with those of § 6 obtained
for E acting in the sample plane normal to n,. Section 7
summarizes the main results of this work and indicates
possible extensions to the study of PD in cylindrical
geometry. The Appendix contains a purely formal
derivation of the PD threshold in the presence of
electrical conductivity.

2. Governing equations; boundary conditions for E
parallel to the plates

The nematic insulator is initially aligned along x with
n,=(1,0,0) between parallel glass plates z= +#4 and
flat electrodes at x = +g such that the electrode gap
(2g) is large compared with the sample thickness (24),
with the region of interest being close to x=0. A
potential difference Vy is impressed between the
electrodes. The magnetic intensity H is either along x,

HHZ(HH,O,O)
or in the yz plane,

H,=(0,H,Ca,H Sa); Ca=cosa; Sa=sin a.

When o =n/2, H, is along z; when a vanishes, H,

is along y. These o values correspond to symmetry

directions for planar alignment. Inside the sample, the

unperturbed electric field is
Eo=(Ex,0,0); Exo=Vxl2g.

When perturbations are imposed on n,, the electric field

also becomes modified,

n=(CyCy, S4,SgCy); E=Eo,+E; E'=—Vy (1)
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where 0, ¢ and v are functions of x, y and z. Maxwell’s
curl equation has been employed to express the electric
perturbation as the gradient of a scalar potential, impli-
citly making the assumption that the nematic is an
insulator. The perturbations and their derivatives are
assumed to be small so that only terms up to linear
order are retained in the governing equations. For
constant potential difference between electrodes, the
total free energy F of the sample is

F= J WAAA+ AWs(z=h)+ AW s(z= —h);
A

wa _(¢}+9 )+ (¢ +9 )+ (¢ +9v)
+ (K1 — K24)y0:+ (Koa — K2) -0,
—?wﬁ—ﬁ(wﬁ* vi) + At fe+ S
T 8=
fr=0; fp=0 (9 +¢)+ (¢w}+9w)
xAH]
fmzﬂ(@% ¢*) if H, =0 or
XA H 2.
M= — (Saf+ Cag) lfHH:O
B B By By
ws=—t¢ +L0% wi=—tg+ 0 (2)

2 2 2 2

where A is the sample volume, W4 the volume free
energy density [27], 4 the area of either plate, Ws and
W s the surface free energy densities at the two plates in
the Rapini-Papoular form [ 5] and a subscripted comma
denotes partial (or ordinary) differentiation; e =¢|— ¢,
where ¢ and ¢ are, respectively, the dielectric constants
parallel to and normal to no; By, By are polar anchoring
strengths at z= +#, respectively; By and By are the

corresponding azimuthal anchoring strengths. While
only the polar anchoring strength is relevant for homeo-
tropic alignment [25], both anchoring strengths appear
in the present case. Terms of zero and first order have
been dropped from WA as they seem to be inoperative.
Terms corresponding to flexoelectricity are omitted for
the present (/g =0); this may be a meaningful assump-
tion if Vy is time varying with a sufficiently high fre-
quency. However, possible effects of flexoelectricity are
briefly discussed in § 4.3.

Of the three perturbations, 6 and ¢ are the angular
variations of the unit director. The governing equations
are derived by minimizing F with respect to each of the
three perturbations. While studying a virtual variation
of one variable (say, y), the other two are held fixed;

then, Maxwell’s divergence equation results [29]:
enbxo(gyt 0:2) — ewax— e (wyy T yeo) + A =0;
Ar=0. (3)
The modifications of E are connected to derivatives of
0 and ¢. The flexoelectric term Af is neglected for the
present. The two independent components of the torque

equation result from a variation of F with respect to 0
and ¢:

K30+ K20,,+ K10+ ag0+ (K1 — K2) -

+ app+ Uy=0 (4)
Kiypox+ Kidyy+ Kagoo+ bpp+ (K1 — K2) 0,

+ byt Us=0 (5)

ag= )(AHi_Sgc, ap= b9= )(AHiSaCoc, by= )(AHi_Cgc or

a9:b¢:—)(AH‘2‘, ag="by=0;
Ui — gAExo _ sAE,%o o
8 4n Ve 4z
gAExo EAE,%O
Up= — Wy — 9. (6)
4 4

The volume torque does not depend on K4 which
appears only in the surface elastic torque relevant to the
boundary conditions:

owa oOWA
T+ By0=0;, T+ Bsp=0atz=rh;
00 0¢.-
L — Bp0=0; Ll B 0 at I
= - = =0atz=—hn;
00. 9 0p. D '
owA
69 K19 +(K1 K24)¢w}’+79; 79:0
owA
6¢,::K2¢’:_(K2_K24)9’y' (7)

The term 74 is useful for including flexoelectric contribu-
tions. Clearly, 6 and ¢ will not vanish at the boundaries
as is true for rigid anchoring. The third boundary
condition is related to yw. While E inside the glass
(isotropic dielectric) plates is along x, E inside the
nematic, from equation (1), is perturbed. Inside glass,
the electric induction D is also directed along x so that
the normal component (D:) vanishes. Continuity of
D. at the interfaces between the nematic (anisotropic
dielectric) and glass implies [29] that

gAEXOQ—gJ_y/,:‘F Ap=0atz=+4h; Ap=0. (8)

The flexoelectric contribution (Ap) is ignored at present.
As done earlier ([ 20, 24, 25]; see also note 26 in [21]),
the additional condition of continuity of tangential com-
ponents of E at the interfaces is not explicitly imposed.
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The solution of equations (3)—(5) with (7) and (8)
generally reduces to that of an eigenvalue problem.
Depending upon the attributes of the distortion, the
required subset of terms from equations (3)—(8) is
chosen. H is also selected for a given configuration such
that it either stabilizes or destabilizes n,. Without loss
of generality, Exo (or Vy) can be assumed to be positive
because the transformation

Exo—>—Exo, y—>—vy

leaves equations (3)-(8) unaltered. In general, four
different solutions can be studied:

Homogeneous deformation HD: perturbations vary

with :z.

X Mode: PD with wave vector along x; perturbations
depend on x and :z.

Y Mode: PD with wave vector along y; perturbations
vary with y and z.

XY Mode: PD with wave vector lying in the xy plane
(plane of the sample); perturbations depend on all
three coordinates.

The action of K»4 in the surface torques (7) is opposed
to that of K> or K. In addition, K»4 appears in equation
(7) only when 6 and ¢ depend on y. Hence, K affects
only the Y and XY Modes. An estimate of the magnitude
of K»s is obtained by restricting the quadratic form
representing the elastic free energy density in W4 to be
definitely positive. Apart from the four elastic constants
being definitely positive, one must have

Ky <2Ki1; Ku<2K;.

If K1 > K> (which is usually the case), the second restric-

tion is taken; in the opposite case, the former is assumed.
In either case, the maximum value of K»4 is of the same

order of magnitude as K| or K>.

In reality, the anchoring strengths ~ 107 to
10 %ergem [ 5]. The strong anchoring limit is particu-
larly interesting as it yields analytical solutions in many
cases. In this limit, the magnitude of the product of
anchoring strength and director perturbation in equa-
tions (7) is large compared with the derivative terms
representing the elastic surface torque, so that the magni-
tudes of 6 and ¢ at the boundaries are small at threshold
in spite of a deformation in the bulk. In the extreme
case of rigid anchoring, both perturbations will vanish
at the boundaries. Then, equations (7) and (8) reduce
to

0=0, ¢=0; w:=0atz=+h 9)

For moderate fields, the PD wavelength at threshold
is ~ the sample thickness. Hence, the surface torque
~KO/h where K is an average elastic constant. This
should be small compared with B6 for strong anchoring.

In other words, the dimensionless quantity c = Bh/K>>>1.
With B~ 102 ergem ™, A ~ 10 >cm and K ~ 10 *dyne,
o~10% this would correspond to strong ancho-
ring. On the other hand, c~1 if i ~ 10 em (very thin
sample). Then, the bulk elastic torque may cause
non-vanishing 6 and ¢ at the boundaries; the influence
of K4 may also be felt on the distortion. Thus, sample
thickness is a relevant parameter in thin samples with
weak anchoring.

The general case of different anchoring strengths at
the two boundaries introduces four parameters into
equations (7). For simplicity, we assume that the corres-
ponding anchoring strengths at the two plates are equal:

Bp=Bg By=By.

With this, it is possible to study uncoupled solutions
with definite spatial symmetry relative to z =0 in many
situations.

3. Material with positive ¢ and ya
The material chosen is SCB [18] with the material
parameters at 28°C:

(K1, K2, K3)=(5-21,2-71,6-67) X 10 ' dyne;
xa=1-1x10""emu;

(g, £,)=(17-86,7-25); &n=1061. (10)

As E, stabilizes n,, it is natural to consider H, with
H| = 0. The anchoring is assumed to be rigid.

3.1. Results for rigid anchoring with o = r/2

Now, equations (3)—(8) assume a particularly simple
form. We start with HD; with dependence on z, ¢ gets
decoupled from 6 and v in equation (5). Due to equation
(9), ¢ damps out in the sample as H, acts along z and
¢ is in the xy plane. Equations (3) and (4) lead to a
second order differential equation in 6 supporting two
uncoupled solutions. We choose the solution with 6
symmetric (and y antisymmetric). With the ansarz 6=
Omcos(gz/h), it is required to find the lowest H | at
which Owm is non-zero. This yields the splay Fréedericksz
threshold Hp,

K1 /2 EAE 112E2 T

2 _B1 _ X0 _T
Hr=| (¢t o) i W= ;4=

xah dnKie 2

1

(11)

Clearly, the above is an eigenvalue problem. At HD
threshold, we only know that Om is non-zero but its
value is not known. The factor ¢/e, appears in wg as a
consequence of the torque due to v in equation (4).

The X Mode again does not involve ¢. Equations (3)
and (4) now support two uncoupled solutions:
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X Mode SOLUTION 1: 9 is symmetric and w
antisymmetric.

X Mode SOLUTION 2: 9 is antisymmetric and y
symmetric.

SOLUTION 1 has the same spatial symmetries as HD
and the X Mode becomes an extension or generalization
of HD. The ansatz for a closed solution is

(6, w) =[Omcos (qz/h) sin (gx), w yrsin (gz/h) sin (q,x)]

where ¢, the wave vector of periodicity along x, depends
on material parameters, field strengths and sample thick-
ness. Substituting in equations (3)—(4) and using equa-
tion (9), ¢ is found to be n/2. The compatibility of (3)
and (4) for non-vanishing perturbation amplitudes leads
to an expression for H | as a function of the wave vector:

5108+ 5,02+ 83
oH(Qx) = 2 5

Ox=qxh;

1= P1B3;

_ " _ L3
52—wE+4(I31+I33); &= 4 w5+4). (12)
Clearly, when 0—0, H (Qx) reduces to Hr (11). Also,
H | (Qx) depends on Q,% showing that the sign of O, is
unimportant. Suppose Eyo is high enough. Due to the
net destabilizing action of E', H | (Qx) diminishes when
0, is increased from zero, reaching a minimum Hpx =
HJ_(QPX) when Q.= Qpx. Further increase of ¢, causes
an increase in H (Qx); hence, Hpx and Qpx can be
regarded as the X magnetic threshold and (dimen-
sionless) wave vector at threshold, respectively. From
equation (12),
2

2
T 161 N
Q12>x: (A—1); A2:1+ 4([3153— );
1 Sim

4B 4

60\ Ki
Hpx = (251 QI%X+/3—

2 (13)
1 |xah

It is convenient to define a reduced X threshold in terms
of Hr from equation (11):

Hpx
Hy ’
When rx<<1, the X Mode is more favourable than HD.
Clearly, as E,, increases, Qpx increases and rx diminishes.
When E,, is sufficiently low, Qpx vanishes. In this limit,

the X and HD thresholds become equal leading to the
critical electric field E1,

rx —

3 2
, mK3e

2 7 - (14)
h €| €A

For Exc<E1, the X Mode cannot exist and only HD is
possible. It is instructive to compare E; with Em (see
equation (18) of [21]). Em can be obtained from Ei by
substituting K for K3 and interchanging the dielectric
constants. The reduced electric field Rg is defined using
Eq,

EXO
Rg="".
E
The X Mode occurs only when Rg>1. Increase of E;
implies an increased width of the region of existence
of HD.

While HD involves only a splay deformation, X Mode
is associated with both splay and bend. This actually
increases the elastic free energy of X Mode relative to
that of HD [note the term K3 Gfr in equation (2)] causing
an additional stabilizing torque K360, in equation (4).
However, E for the X Mode contains two perturbations,
Ey= —y, and E.= — y_. both of which vary periodic-
ally with x. Of these, E: (destabilizing component) is in
phase with 6 along x while E; (stabilizing component)
is out of phase. In addition, E. is symmetric (like )
while Ey is antisymmetric. Hence, the destabilizing effect
of E! is felt more strongly than the stabilizing influence
of Ex. Once the additional stabilizing influence of bend
is overcome [note K3 in the numerator of equation
(14)], the X Mode sets in; as the torque due to E' is
eaExoy: in equation (4), this happens when Ey, is
sufficiently strong. The higher the ea, the stronger is this
torque due to E'. Hence, ea appears in the denominator
of equation (14). To understand this more formally, E; is
differentiated with respect to one of the variables, keep-
ing the others fixed. Then, 0Ei/0e., O0E1/0e)<<0 and
OE110K3, 0E1/10g; >0 all of which supports the above
qualitative arguments.

With the parameters (10), rx and QOpx are studied as
functions of Rg [curves 2 in figures 1(«) and 1(b)] with
a sample thickness 24 =500 um. The study of reduced
quantities makes the results independent of sample thick-
ness. When Rg assumes high values, rx tends asympto-
tically to a lower limit. From equations (11)-(13),
rxw(gl/gu)l/z when Rg>>1; in the same limit,
QPXN(nZRE/Mh)I/Z. Interestingly, this limit is independ-
ent of the elastic constants. For sufficiently low Rg, the
wavelength of periodicity ~2i. Relevant quantities for
SOLUTION 2 can be calculated by substituting 2= for
n in equations (11) and (12). Results are not presented
for SOLUTION 2 as it has higher threshold than
SOLUTION 1 and is, therefore, of no interest. This is
because an antisymmetric 0 is the next higher harmonic
to the symmetric 6 and hence the elastic deformation
energy of SOLUTION 2 is higher than that of
SOLUTION 1.
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Figure 1. Plots of rx, ry, Opx, Opy as functions of Rg under
rigid anchoring hypothesis (see § 3.1 and § 3.2 for defini-
tions). The material chosen is SCB with parameters (10).
The planar orientation is stabilized by Eo along x and
destabilized by H, applied in the yz plane making angle
o radian with y axis. rx and ry are the reduced magnetic
thresholds for the X and Y Modes, respectively. Qpx and
QOry are the reduced wave vector amplitudes for the two
Modes. Curves 1 and 2 represent, respectively, the Y and
the X Modes; a dashed curve denotes a region of no real
interest. Diagrams are drawn for o = (a, b)n/2, (¢, d) 0-8 rad.
In (a,b), both Modes conform to the symmetries of
SOLUTION 1. In (c,d), the X Mode possesses the sym-
metry of SOLUTION A and exhibits a critical point with
HD; the Y Mode is a mixture of SOLUTIONs 1 and 2
and hence does not possess a critical point in the low Rg
region. The crossover from Y Mode to X Mode is evident
in (¢,d). Curve 1 in (¢) has not been exhibited fully where
ry>1. Curves 3 in (a,b) represent the Y Mode for a
hypothetical material with K; =4K5. The critical point
between HD and Y Mode disappears in this case as the
Y Mode exists even when Ey, =0 (see also §5.2).

Calculations for the Y Mode proceed similarly except
that now all three variables enter the picture. While 6
and y are in phase along y [say, with a variation of
sin(g,»)], ¢ is out of phase [with the dependence
cos(gy»)]. The two uncoupled solutions are referred to
as before as 6 and y have the same symmetry as
the X Mode:

Y Mode SOLUTION 1: 0 is symmetric; y and ¢ are
antisymmetric.
Y Mode SOLUTION 2: 6 is antisymmetric; v and ¢
are symmetric.

Even though the Y Mode has periodicity along y (normal
to the initial alignment), the perturbations conform to

definite spatial symmetries because H, acts along z
which is a symmetry direction.

Clearly, SOLUTION 1 involves lower deformation
energy than SOLUTION 2. The net destabilization
influence due to E’ is also stronger for SOLUTION 1.
Once y dependence is separated out of equations (3)—(5),
three coupled ordinary differential equations result, each
of second order. These are solved by the series solution
method with boundary conditions (9) to yield a compat-
ibility condition from which one obtains the neutral
stability curve H | (Qy) where Q,=g¢,h. The minimum
Hpy=H (Qpy) occurring at Q,= Qpy is taken as the
Y threshold; the reduced magnetic Y threshold is defined
in terms of Hr of equation (11) as ry= Hpy/HEF.
Computation for equation (10) shows that ry<rx for
all Rg [figures 1 (a) and 1 (b); curves 1] with the critical
point for Y Mode also lying below that of X Mode
(Re=1). The reason for this is obvious from equations
(3)—(5). In comparison with HD, the additional elastic
deformation in the X Mode is the bend while the
corresponding distortion in the Y Mode is the twist
[K20,, in equation (4)]. The decrease in free energy
caused by this is partially offset by the antisymmetricity
of ¢ which introduces additional splay and twist contri-
butions [K1 ¢,y and K24 in equation (5)]. The X Mode
has only one destabilizing contribution from vy in
equation (4); the Y Mode benefits from this and also
from the additional destabilizing torque ~y, in equa-
tion (5). This may account for the Y Mode being more
favourable than the X Mode. The Y Mode is associated
with antisymmetric ¢, but ¢ does not appear in HD. No
direct coupling exists between ¢ and H | in the present
case. The existence of the critical point between the
Y Mode and HD is an indication that the amplitude of
¢ depends on Qpy so that ¢ disappears when Qpy—0.

In a nematic with K1>3-4K>, the Y Mode results
instead of HD when H | acts along z even in the absence
of Eo [6, 8] (see also § 5). For parameters (10), however,
the Y Mode cannot set in unless E, is impressed; only
HD exists. The Y Mode develops in SCB (10) when the
lack of elastic anisotropy is compensated by the destabil-
izing contribution arising from E’ [figures 1(a) and
1(h)]. A critical point (=~0-8Rg) exists between the
Y Mode and HD owing mainly to the deficiency in
elastic anisotropy of equation (10). It is, therefore,
possible that a material with parameters (10) but a high
enough elastic anisotropy will not have a critical point;
in such a case, the Y Mode would develop for any Rg
and HD would never set in. This conjecture proves true
for a hypothetical material with parameters (10) except
that Ky =4K> [curves 3 in figures 1 (a) and 1(5)]. With
increase of Rg, the stripe width and ry decrease due to
the enhanced destabilizing torque resulting from E’ [see
terms ~Exoy: and E, oy, in equations (4) and (5)].
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Presently, we shall contrast this behaviour with that
exhibited by a similar material in a different geometry
(§5.2).

The XY Mode can also be studied. The x, y variation
is sin Q/h(Cux + Suy) for 6 and y and cos Q/h(Cux + Suy)
for ¢; p is the angle between the dimensionless wave
vector of magnitude O and the x axis. With this ansatz,
equations (3)—(5) reduce to a set of ordinary differential
equations which support the same modal structure as
for the Y Mode. The solution effected with the series
method yields a neutral stability surface #(Q, ). For
u=0, the neutral stability surface degenerates into the
neutral stability curve for the X Mode whose minimum
yields the X threshold. Similarly, the Y threshold results
at u = n/2. Calculation shows that when Rk is sufficiently
high, the absolute minimum of the neutral stability
surface lies at u = n/2, corresponding to the Y threshold;
no other minimum can be found at other u values. Thus,
the XY Mode degenerates into the Y Mode. This is to
be expected because the free energy density for the
XY Mode results from that of the Y Mode by the
addition of two purely positive terms, K3 Gfr and
K3¢§. These correspond to purely stabilizing elastic
torques, K30 and K3 . Naturally, no point on the
neutral stability surface can dip below the Y threshold.
Hence, the XY Mode is not studied.

3.2. Results for rigid anchoring with a# r/2
Now H | is tilted away from z in the yz plane at
different «. With dependence on z (HD), all three per-
turbations are coupled. Equations (3)—(5) yield a pair
of coupled ordinary differential equations in 6 and ¢.
For symmetric 6 and ¢, the z dependence ~ cos(nz/2/)
leads to the HD threshold,

(K¢, TC3 + EAE| thgo)(K21c3 + gAlzino)
4T[)CA]12[8J_T[3(K1 Cgc+ KzSgc)
+ gAth'%O(gH Céq+ gJ_Sgc)]

Hi (o) =

(15)

which is a function of . When a=n/2, equation (15)
reduces to (11) with ¢ decoupling from 6 and y. If H,
acts along y, 8 and w damp out and (15) yields
PHE(a=0) =’ € th%o
which is obtained from (5) alone. The absence of the
ratio g|/e; shows the non-existence of electric modula-
tions for a twist HD, leading to the following conclusion.
As the tilt of H | is varied away from z towards y, the
coupling between y and the director deformations dimin-
ishes. As both PD Modes at o =n/2 arise from the
destabilizing influence of w, the X and Y thresholds
should increase relative to the HD threshold when « is

diminished from =n/2. At sufficiently low «, both PD
Modes should be quenched. If the rate of increase of
threshold for « variation is different for the X and Y
Modes, a crossover might even occur from the Y to
the X Mode.

For the X Mode, equations (3)-(5) support two
decoupled solutions:

X Mode SOLUTION A: 0 and ¢ are even; v is odd.
X Mode SOLUTION B: 0 and ¢ are odd; v is even.

The X Mode perturbations exhibit definite spatial sym-
metry as the direction of periodicity (x) is along the
optic axis and H | acts in a plane normal to x. Compared
with the case a = n/2, the X Mode is associated with the
additional perturbation ¢ whose presence only adds to
the elastic free energy without introducing additional
destabilizing torques via modification of E. Thus, ¢ only
adds stabilizing torques whose magnitude increases as o
is diminished from =/2. Hence, the X Mode gets sup-
pressed in favour of HD when H | is rotated away from z.
Clearly, SOLUTION A has the same symmetry as
HD and can be regarded as an extension of HD. As all
three perturbations are in phase along x, the ansatz

0 ) 0 nz nz . [mnz
s @, - cos|{ |, cos| — |, sin|
0.9y M 2h oM 2h VM 2h

. Oxx
XsinT
h
satisfies equation (9) as well as symmetry requirements.
Substitution in equations (3)—(5) leads to a compatibility
condition and the neutral stability curve, #,(0x):

xAlHY 108+ pot+ pnoi+ v4

Ki O+ 0ty

K3
="

X 71 = B1B2B3;

2
V2=%[ﬂ3ﬂ2+ﬂ1(ﬂ2+ )1+ 2B ok

4

y3=§(ﬂ1 + B2+ B3) + QewE

2
+%[wE+QE(ﬂl+ﬂ3+ﬂlﬂ3)];

R NN
4 4l a OE 4 E|: vs=P1PB2

2 ﬂZ
[324—[31(0%_4- Sgc) R
B3
T

2 2
T B2 2 2 2
= Ca—+ Sa |+ Qg(Sa+ Ca
77 4l ( 55 ) E( B1)

(17)
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At a given a and sufficiently high Rg, the X threshold
Hpx is the minimum of (17) occurring at 0= Qpx. The
reduced threshold rx = Hpx/HF is defined using Hr of
(15). As the X Mode is an extension of HD, a critical
point can be expected between the X Mode and HD
where QOpx— 0.

The case of Y Mode is not so simple. When H, acts
at some arbitrary « in the yz plane, its direction is not
symmetric relative to the direction of periodicity (y). As
seen from equations (4) and (5), magnetic cross coupling
terms involving )(AHiSaCoc arise connecting ¢ and ¢_
as well as 0 and 0.. A closed form solution cannot be
obtained with each perturbation possessing a unique
spatial symmetry as in SOLUTION 1 or SOLUTION 2.
Each perturbation becomes the sum of two terms as in

0yy

1

Qyy .
6= 0y cos ; + Orsin
i

where Ou, Or, etc. are functions of z. Substitution in
equations (3)—(5) yields six coupled ordinary differential
equations in Oy, ¢r, etc. From (9), six boundary condi-
tions also result. If 1, ¢t and wyu are even, then Ou, ¢u
and w1 are odd. Thus, each perturbation is a linear
superposition of two terms of which one conforms to
the symmetry of SOLUTION 1 and the other to
the symmetry of SOLUTION 2. The presence of
SOLUTION 2 elevates the elastic deformation energy
and diminishes the destabilizing contribution from E'.
The proportion of SOLUTION 2 increases as o is
diminished from =/2. Hence, the Y Mode becomes
unfavourable at sufficiently low a.

At suitable o and Rg, the series solution method is
applied to equations (3)—(6) and (9) and the Y threshold
numerically calculated as the minimum Hpy= H (OpY)
of the neutral stability curve #,(Q,). The reduced mag-
netic threshold ry = Hpy/HF is defined using Hf of (15).
As the Y Mode perturbations have no unique spatial
symmetry at general a, the Y Mode and HD are not
separated by a critical point where QOpy vanishes. In
general, Opy is non-zero when ry attains unity so that
the transition from Y Mode to HD occurring at low Rg
is one of the first order, assuming Qpy to be the order
parameter.

The results for both Modes reduce to those of
figures 1 (a) and 1 () (curves 1 and 2) when «a is close to
n/2; the Y Mode is more favourable than the X Mode
over the entire Rg range except that HD prevails when
RE is very small. This is to be expected as the proportion
of SOLUTION 2 is minimal when « is close to n/2 so
that the perturbations have almost the spatial symmetry
of SOLUTION 1. The discontinuity of the transition
between the Y Mode and HD is also imperceptible.
When « is higher (H rotated away from the z axis),

marked deviations occur in the variation of threshold
parameters. The Rg variation at o =0-8rad bears this
out [figures 1(c) and 1(d)]. The Y Mode is more
favourable that the X Mode at high Re. When Rk is
diminished, a crossover occurs between the two Modes
with the X Mode becoming more favourable than the
Y Mode. This should be accompanied by a discontinuous
change in the wave vector of periodicity (change in
direction by n/2rad and a decrease in the stripe width).
At this «, the X Mode critical point is higher than
Rg=1. In this region, the Y Mode is of academic interest
as the Y threshold cannot meet the HD threshold
continuously and ry>1.

The variation of « at fixed R (figure 2) complements
the conclusions of figure 1. The Y Mode is more favour-
able than the X Mode when « is close to n/2. When «
is decreased, a crossover occurs from the Y to the
X Mode accompanied by discontinuous change in the
wave vector. In this region again, ry>1. When «a is low
enough, even the X Mode disappears below a critical
point and HD alone exists. When Rg is diminished, the
o ranges of existence of both PD Modes shrink
[figures 2 (¢) and 2(d)]. Then, HD appears over a wider
o range starting from a =0. The Y threshold exceeds the
X threshold with decrease of a because of the larger

1.5

Figure 2. Variation of rx, ry, QOpx, QOpy with a for 5CB
parameters (10) at Rg=(a,b) 125, (¢,d) 8 (see §3.2 and
figure 1 for details). The X Mode (curve 2) conforms to
SOLUTION A (and exhibits a critical point with HD);
and Y Mode (curve 1) does not exhibit a critical point
as it is a mixture of SOLUTIONs 1 and 2 (§3.1). The
crossover from Y Mode to X Mode occurs when H | is
rotated from z towards y. The a range of existence of both
PD Modes shrink when Rg is decreased.
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proportion of the unfavourable SOLUTION 2 getting
mixed with SOLUTION 1.

The XY Mode solution is analogous to that of the
Y Mode. The XY Mode perturbations also do not
possess pure spatial symmetry. Closed form solutions
are in the form

Cux + S Cux + S
¢ = ¢u cos L(Cox T Suy) + ¢Tsin L Cux T Sy)

h h

where ¢u, 01, wt belong to SOLUTION 1 and ¢r, 6u,
wu belong to SOLUTION 2. The compatibility condi-
tion obtained from equations (3)—(5) and (9) using the
series solution method enables definition of the neutral
stability surface H,(Q,p) at given Rg and a. H,(Q.p)
does not exhibit an absolute minimum at arbitrary u.
When Re and « are sufficiently high the XY threshold
occurs at u~mn/2 corresponding to the Y threshold itself.
At low «, the XY threshold degenerates into the X
threshold occurring at pu~0. Hence, the XY Mode is
not studied.

Figures 1 and 2 indicate the shape of the phase
boundaries between the different deformations in the
Re-a plane. For the Y Mode, the phase boundary is
obtained by initially fixing Re at a high value. Starting
with o close to n/2, ry and Qpy are determined. Now a
is diminished in small steps and the above calculation
performed for each a. At some a=ay, ry=1. If «a is
decreased further, ry exceeds unity. Generally, Qpy is
non-zero at this point. The value of Rg is decremented
and the above procedure repeated. A plot of Rg versus
ay yields the phase boundary separating the Y Mode
and HD. A similar calculation yields the phase boundary
for the X Mode except that when a— ax, Qpx—0.

Figure 3 (a) contains the phase boundaries of the X
and Y Modes for SCB parameters and is in qualitative

10.0 10.0

Re Re
0.0 : 0.0
0.1 o 1.6 0.1
Figure 3. («) Phase boundaries of the X (curve 2) and Y

(curve 1) Modes in the Rg—a plane for SCB parameters
(10) with rigid anchoring. The X Mode is SOLUTION A
while the Y Mode is a superposition of SOLUTIONS 1
and 2 for general a. (b) Phase boundaries for a hypothetical
material with K; =4K,. The Y Mode exists even in the

absence of E, due to the high elastic anisotropy (see § 3.2
and figure 1 for details).

agreement with the conclusions of figures 1 and 2. The
following points are apparent.

(i) HD sets in at low a (when H | is rotated close to
the y axis) as well as at low Rg; this region is
marked HD.

(i1) In the region marked X, only the X Mode exists
with threshold lower than that of HD.

(iii) The region marked with X and Y is one where
both X and Y Modes can exist as solutions with
thresholds lower than the HD threshold. Here,
an explicit calculation of ry and rx will reveal
which of the two Modes has the lower threshold
and 1is, therefore, the more favourable one.

(iv) The Y Mode alone prevails in a small triangular
region near a = n/2.

Figure 3 (b) shows the phase diagrams for a hypothetical
material having parameters (10) but with K1 =4K>.

This diagram is similar to figure 3 (a) except that the
Y Mode occurs even at Exo=0 when H, acts close to
the z axis. Clearly this is by virtue of the elastic aniso-
tropy of the material (the Y region near the right-side
bottom is now enlarged and extends right down to
RE=0).

4. Material with positive ¢o and ya; weak anchoring

The boundary conditions (7)—(8) are now employed.
In general, both 6 and ¢ may occur; hence, both
anchoring strengths may affect the onset of distortion.
For simplicity, we assume, in §2, that the polar (or
azimuthal) anchoring strength at either boundary is
equal. As the anchoring energy is finite, the bulk elastic
torque induces a deformation at the boundaries which,
in turn, affects the nature of restrictions placed on v, as
v will also not vanish at the boundaries. It is also not
straightforward to scale results to make them independ-
ent of the sample thickness; hence, the sample thickness
becomes a parameter in the problem. The boundary
conditions for different deformations are different; even
in the most general case, K4 will not affect either HD
or the X Mode. Boundary conditions for the Y and XY
Modes, on the other hand, contain K»4. As the wave-
length of periodicity ~ 24, the influence of K»4 becomes
important if Bh ~ Ka4. As Kas ~ 107 dyne, h ~ 10 " cm
for K»4 to be effective if the relevant anchoring strength
B~ 10 “ergem . Such a sample thickness is available
in the sub-micron cavities in PDLC films. In thicker
samples, the effect of Ko4 is less significant. If, on the
other hand, the anchoring is still weaker, effects of K24
may be seen even in thick samples.

4.1. Results for weak anchoring with o= /2
With H, acting along z, the results are especially
simple in some cases. For HD, ¢ damps out leaving 6
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coupled to y; only Bgis now relevant. From equations
(3), (4) and (7), the HD threshold is found:

Beh
09COSgc — gcsingc =0; oy= P (18)

For a given Bgand other parameters, gc is numerically
determined by iteration; then Hr is computed. When
og>1, qc~n/2 and (18) reduces to (11). In general, ¢c
(or equivalently Hr) diminishes when o, is decreased.

The structure of the X Mode remains the same as
that for rigid anchoring. Again, ¢ does not appear; 6 and
y are in phase along x and possess the symmetries of
SOLUTION 1 or SOLUTION 2. Proceeding as in §3.1,
the neutral stability curve for the X Mode is determined
from

ogqi+ 43) cos g1 — q1(B10x + ¢f) sin ¢1
+ ¢2(¢3— B103)(cos q1) tanh 2= 0;

(P+4P) >+ py (PI+4p)'?— p

2
q1 s 92 5

2

2 2
PI=on— or — 0x(B1+ B3);
Pr= Q[ i (wn— B303) — wE]. (19)

The X threshold is affected only by By the polar
anchoring strength, and is independent of By, the azi-
muthal anchoring strength. For strong polar anchoring,
(0g>>1), equation (19) reduces to cosq1=0 or q1=~n/2

leading to equation (12) for rigid anchoring. Hence,
results of X Mode from (19) should reduce to those of
(12) when the anchoring is strong. The reduced X
threshold is calculated in terms of Hf (18). The X Mode
and HD need to be compared. The perturbations of
both deformations possess identical spatial symmetry
for z dependence; they also obey identical boundary
conditions. But for the X Mode condition (8) has to be
separately imposed while for HD it is identically satisfied
once (3) is integrated. Because of this reason even if a
field, say Eyo = Ea, exists where Opx— 0, rx may exceed
unity in this limit. Thus, Eo cannot be a true critical
point separating HD and the X Mode. When equation
(19) is expanded in powers of Q. and (18) used, (19)
takes the form N Q,%: 0 to lowest order in Q, where N;

is a function of material parameters, anchoring strength
and E. Equating N1 to zero and solving for E.o,, one
gets

2
2 qc B 5 4nKi¢
Ex= —(optoptqer)—o . (20
q(2:+6é Bi o "0 0) n (20)

When o1, Ea=E; of (14). When oy is diminished
(the polar anchoring is weakened), gc has to be first

computed and Ea calculated subsequently. For uniform-
ity, RE is calculated as before in terms of E1, equation
(14).

For the Y Mode, the equations for equilibrium in the
bulk (3)—(5) are the same as those for rigid anchoring,
but the boundary conditions (7) and (8) are different.
Out of the two uncoupled solutions, SOLUTION 1 is
selected. The Y threshold is determined numerically
using the series solution method and depends on K»,
og and

__ Byh

lo
4 K>

The dimensionless Y threshold, ry, is also calculated in
terms of Hf (18). The difference in the boundary condi-
tions of HD and the Y Mode arises from the terms
~(K1—Kxu)¢, and ~(Kxu— K2)0, in (7). This differ-
ence should disappear in the limit of vanishing wave
vector ¢,. The other difference is the appearance of ¢ in
the Y Mode but not in HD. If the amplitude of the
Y Mode ¢ is proportional to some power of ¢,, then ¢
will vanish with the wave vector; in other words, a
critical point will exist between HD and the Y Mode.

The variations of rx and ry with Rg are similar
to those of figures 1(«) and 1(b) (curves 1 and 2) for a
thick sample (2#=250um) and strong anchoring
(Bg. Bs~10 *dynecm ). The Y Mode is uniformly
more favourable than the X Mode, hence the X threshold
is not depicted. Weakening of anchoring strength by
four orders of magnitude or changing the value of Ko
from zero to 2K» has little effect on the results. The
effect of weak anchoring becomes apparent only in a
thin sample with 2#=2-5pm. A detailed calculation
involves not only choosing different sets of values for
the two anchoring strengths but also for K»4. To reduce
the bulk of presentation, the Y threshold parameters are
plotted (figure 4) against Rg for three extreme sets of
anchoring strengths:

(a,b) strong polar anchoring, weak azimuthal
anchoring;

(¢,d) weak polar anchoring, strong azimuthal
anchoring;

(e, f) weak polar and azimuthal anchoring.

Two extreme values are chosen for K,s—zero and 2K5>.

The case of strong polar and azimuthal anchoring is left
out as the results are similar to those of figures 1 (a) and
1(b) (curve 1) and the influence of K24 is hardly signific-
ant. Regardless of the anchoring strengths, enhancement
of Ky has a salutory effect on the formation of the
Y Mode; in general, the Y threshold decreases at a given
RE, the stripes become narrower (wave vector increases)
and the Rg range of existence of the Y Mode widens
with respect to that of HD. This is clearly because of
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Figure 4. Plots of ry versus Rg when director anchoring energy is finite and the sample thin (#=2-5um). H | acts along z so that
the Y Mode perturbations conform to definite spatial symmetry. rx (the reduced magnetic threshold of the X Mode) is omitted
as it is higher than ry for all Rg. Parameters used are from (10) for SCB with (Bp, By) = (a,b) (1075,107%), (¢,d) (107°,107%),
(e,f) (107°, 10_6)erg cm 2 The curves are drawn for K= (1) zero (2) 2K> (see §4.1).

the opposing role of the K»s surface torque (7) with

respect to those corresponding to K1 and K. Obviously,

the effect of Ky is most pronounced when both

anchoring strengths are weak [figures 4 (e) and 4(f)]
with the Y Mode appearing to form even in the absence
of Rg; this result is in qualitative agreement with the
findings of [28]. A diminution of By widens the range
of existence of the Y Mode—compare figures 4 («) and
4(b) with 4(¢) and 4(d). A reason for this is that
development of the twist, ¢, is central to the formation
of the Y Mode. Decrease of By makes it easier for ¢ to

form through the action of electric perturbations—for
5CB (10), the elastic anisotropy is not high enough to
induce Y Mode in the absence of E.

4.2. Results for weak anchoring with o % r/2

As in §3.2, the governing equations for the X Mode
support two uncoupled solutions of which we choose
SOLUTION A. The Y Mode is a mixture of
SOLUTIONSs 1 and 2 superposed out of phase along y.
The full set of boundary conditions (7)—(8) is employed.
As the X Mode now involves ¢, its threshold is influenced
by both anchoring strengths (unlike the situation in
§4.1). The thresholds are computed by the series solution
method. When both anchorings are strong (say,
Bg, By~ 1072 erg cm_z), the results become almost
identical to those of figures 1 (¢), 1(d) and 2. At a given
Rg, the Y Mode is more favourable when « is close to
n/2; the X threshold dips below that of the Y Mode
when H | is rotated sufficiently away from z. At a given

o (sufficiently removed from =/2), the Y Mode is more
favourable than the X Mode at high Rg while the reverse
holds when R is decreased to low values.

A detailed exposition of the effects of anchoring
strengths is cumbersome. The influence of the anchoring
strengths on the ranges of existence of the X and Y
Modes can be appreciated by choosing the three extreme
cases of §4.1 even for a thick sample (figure 5) when H |
acts roughly midway between the z and p axes. The
nature of variation of threshold parameters is similar to
that found in figures 1(¢) and 1(d) with the Y Mode
becoming unfavourable when Rg<<6. K4 has been
equated to zero because its effect on the Y Mode is felt
only at low Rg where the Y Mode is of only academic
interest. The range of existence of the Y Mode widens
when By is diminished [compare figures 5(¢) and 5(d)
with 5(a) and 5(b)]; diminution of By does not have
much effect [compare figures 5(c¢) and 5(d) with 5(e)
and 5(f)]. The Y Mode exhibits a strong discontinuity
of threshold with HD in the low Rg region with the
wave vector remaining non-zero when ry =1.

As the X Mode survives in the low Rg region, one
can compare the diagrams to find out how changes in
anchoring strengths affect this Mode. In general, Opx—0
when rx—1. The range of existence of the X Mode
widens when the polar anchoring is weakened [figures
5(a—d)]. Weakening of the polar anchoring makes it
easier for the 6 deformation to set in. As 6 is the principal
deformation of the X mode which causes destabilizing
electric perturbations, a factor aiding the formation of 0
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Figure 5. Variations of rx, ry, QOpx and Qpy versus Rg for weak anchoring; parameters as in expression (10) and /=250 pm.

H  acts in the yz plane making angle @ =0-8 rad with the z axis (see

figure 1 for details). Curves 1 and 2 represent, respectively,

the Y and X Modes. Curve 1 has not been fully shown in the low Rg limit in (a, c,e) where ry exceeds unity. Diagrams are
drawn for (Bg, Bg)=(a, b) (107,107, (¢, d) (1075,107°), (e,) (107,10 %) ergem . K»4 is assumed to be zero (see § 4.2).

should widen the range of existence of the X Mode.
From figures 5 (a), 5(b), 5(e) and 5(f) the critical point
of the X Mode is found to move to slightly higher Rg
when the azimuthal anchoring is weakened. In the
X Mode, ¢ does not perturb the electric field; it only
brings in additional elastic energy without generating
other destabilizing torques. A factor influencing the
development of ¢ cannot, therefore, lower the X
threshold or widen the range of existence of the X Mode.
Figures 4 and 5 show that the phase boundaries of
the X and Y Modes have the shapes found in figure 3 ()
even for weak anchoring. The effect of diminishing the
anchoring strengths is strong when Rk is low and the
sample sufficiently thin. The presence of K24 may domin-
ate when H, acts close to z [figures 4 (e) and 4 (f)]. The
phase boundaries are determined in a thin sample for a
few extreme sets of anchoring strengths (figure 6). While

the wave vector of the X Mode tends to vanish on Re Re

curve 2, the Y Mode wave vector generally remains non-
zero on curve 1. For stronganchoring, the phase diagram
closely resembles figure 3 (a), hence this case is left out.
Diminution of polar anchoring strength tends to push 0.0
the X phase boundary to lower a [compare figures 6 (a)

50 r

HD 2

(e)

0.0 !
0.4 1.6

(b) (d) >~

— 0.0 !
0.4 o 1.6 0.4 o 1.6

and 6(b)]. The effect of K24 in promoting the Y Mode Figure 6. Phase boundaries for the Y (curve 1) and X (curve 2)

in the low Rg range close to a =n/2 can be appreciated
from figures 6 (¢) and 6 (d).

4.3. Flexoelectricity with weak anchoring; qualitative
discussion
When flexoelectricity is included, terms (e1+ e3) y -
and (e1+ e3) y.xy are added to the right-hand sides of Uy

Modes for a thin sample (A=2-5um) when anchor-
ing energy is finite (compare with figure 3). Parameters
(10) for 5CB are employed. K»4 is zero except in (d)
where Kys=1-5K,. The dnchormg strengths tdke the
values ( B@ By)=(a) (1075107%), (&) (1075,107%), (¢, d)
(10~ ® 10 yergcm -2 . Comparisons of (¢) and (d) shows
that K24 can extend the domain of existence of the Y Mode
when Rg is low (see §4.2).
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and Uy, respectively, in equation (6); in addition, the
following changes are made in (2)—(8):

fF= L’l(¢,}’+ 9,:)11/,x+ e3(0x II/,:_I_ ¢,x11/,y)
+ Evo(e1te3)(050+ ¢x0);
A= 4TC(31 + e3)(¢,xy+ 9,x:);

T9= —e1Exoteryy; Ap=4me36, (21)
where e; and e3 are the flexoelectric coefficients.
Flexoelectricity has two important effects. At the level
of the bulk equilibrium equations (3)—(5), it prevents
perturbations from having definite spatial symmetry
even when the rigid anchoring hypothesis is assumed.
As the flexoelectric coefficients are ~10 esu, this effect
becomes prominent in a thick sample when E,, is low
enough (see § 5 of [20]). Flexoelectricity also enters the
surface torque (7), (21) with one contribution being
proportional to Exo (see 7g). If the voltage is a.c. with
sufficiently high frequency, the term ~ Eyo in 74 averages
to zero. When the voltage is d.c. and the anchoring
weak, the above contribution causes HD to develop
without threshold, however small the voltage—ana-
logous to the effect discussed in [15]. For d.c. voltage,
therefore, the analysis of §2 to §4 will not hold as the
ground state will not remain aligned along x.

5. PD under E applied normal to the plates
The nematic is sandwiched between electrodes z =
+4 to which a voltage V. is applied. The sample is
effectively infinite along x and p. Rigid director
anchoring is assumed so that quantities associated with
surface energy are ignored; K4 will cease to matter.
Results can be scaled so as to be independent of sample
thickness; hence some convenient value (say 100 um) is
assigned to /. In the absence of distortion,
Eo=1(0,0,E.); E.o=V.[2h.
Under deformation, n and E are again given by equation
(1). In equation (3), the first term is replaced by s E-0 0 .
In (2), f& is redefined,

EAE:ZO 92 ea ko 91//,)(
E=— + ;
8n 4

in (5), Ug vanishes and in (4),

. 8AE:209 eAE-o YV x
0 4n 4n ’

As E is normal to the surface of the conductor, the

tangential components of E should vanish at the bound-
ariest; i.e. w, and v, should become zero at the plates.
As we are interested in linear perturbations governed by
linear equations, the x and y dependence is imposed of
by the ansarz expi(qyx+g¢,y) where ¢, and ¢, are
independent of space variables. Then, the vanishing of
the tangential components of E is ensured if y vanishes
at the boundaries. Including the rigid anchoring
hypothesis, expression (9) is replaced by

$=0;
for all varieties of deformations. In a formal analogy
with the weak anchoring conditions for the director
perturbations, we can regard the vanishing of w in (22)
as the electric analogue of ‘rigid anchoring’ on y; sim-
ilarly, the condition of the vanishing vy in (9) for the
other configuration can be said to be ‘free anchoring’

for y. Significantly, w affects only the X and XY Modes
and neither HD nor the Y Mode in this geometry.

0=0; yv=0atz=+h (22)

5.1. H along symmetry directions; HD and X Modes

First, the HD threshold is derived. Let H act along x
or z; then ¢ becomes decoupled and damps out. When
perturbations depend only on z, v is decoupled from 6
and vanishes as per expression (22). In a nematic with
ea, x>0 (such as 5SCB [18] or PBG [6]), H| stabilizes
n, against the action of E resulting in the electric splay
threshold (E., = E1) defined by

2 242
h"Hj\ 4nK
E%:(H_er_u)ghz. (23)
4 K1 EA

In a nematic (such as M1 [22]) with ya>0 and &2 <0,
the magnetic splay threshold [# | = H1] is possible with
H, along z (a =n/2):

2 2 ;2

EZoh K

= L eAbzoh _12 (24)
4 4nK1 Jxah

For the same orientation of H,, the electric splay
threshold in a nematic (such as CCH-7 [23]) with ea>0
and ya<<0 is E.o, = E> with

2 2,2
h"H )\ 4nK
E%:(—Tc _ AT )—n . (25)
4 K1 EA

For the X Mode, 6 and y are out of phase along x;
hence 6 and vy, are in phase. While the z dependence of

+1In a real situation, the electrodes may be covered with a
layer of surfactant for the purpose of aligning the director. If
the surfactant is also a conductor, then the boundary conditions
will remain (22). If the surfactant is a dielectric (isotropic or
anisotropic), interesting possibilities are raised. The present
work does not address these complications.
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0 brings in splay deformation, its x dependence intro-
duces bend. Unless this additional elastic torque is
compensated by a destabilizing influence, the X Mode
cannot develop. The governing equations support two
solutions of which we select the one with 8 and v even,
corresponding to the ansarz

xX xX nZ
(6, y)=1] Omsin Qux , WM COS O cos| —|.
h h 2h

Depending upon the material, either H, or E.o is
expressed as a function of Q. using the compatibil-
ity condition arising out of the governing equations. It
can be analytically established that the X Mode thresh-
old cannot exist in any of the three types of material
since the neutral stability curve rises continuously from
the corresponding HD threshold without showing a
minimum when Q, increases from zero.

The physical reason for this is not far to seek. The
torque on @ arising from E' is ~gA E-o w. In a material
with ga >0, for instance, v stabilizes the initial orienta-
tion adding to the existing stabilizing influence (of H
in 5CB or of H, in CCH-7); this ensures the continuous
rise of the neutral stability curve for the X Mode from
the corresponding HD threshold—equations (23) or
(25). Even in a material such as M1 with g4 <<0, the
destabilizing effect of v, cannot overcome the additional
stabilizing torque corresponding to the bend deforma-
tion. In this section, therefore, we do not study the
X Mode.

5.2. Y Mode in a material with positive susceptibility

anisotropies

The Y Mode can form in nematics with high elastic
anisotropy [6, 8, 14]. As the Y Mode deformation does
not perturb E,, v becomes decoupled from 6 and ¢. As
the X Mode cannot exist, the XY Mode also is of no
consequence; the XY threshold merely degenerates into
the Y threshold with wave vector along y. Hence, only
the Y Mode is studied.

The well known results for materials with positive
susceptibility anisotropies [ 6, 8, 14] are summarized for
comparison with results of §3.1. We initially select H
which has a stabilizing influence on both 6 and ¢. The
Y Mode deformation conforms to either SOLUTION 1
or SOLUTION 2 of §3.1 (with y being ignored); the
Y threshold is determined as described in earlier sections.
With the ansantz

0, 9=1] 61(5 cos%Ly, $1(8) sithLy:l; gzi’

the governing equations take the form
2

T
¢1’§§_ (ZVI%I‘}_klZQ}Zv) é1— (k12 — 1)Q}’91,é:0;

01+ g—gﬁ ot [1—— 0,1, =0;
Léi k12 : k12 7 l’é ’

(26)

where 01 and ¢ vanish at the boundaries and

1/2
H n (K> K
VN:_u; Hy=""[—" i k=
H»> 2h\ xa K>

7, Mﬁ 2 Ezo
C:ZRE+ (RE—1); Rg="_ . (27)
K1 E;

The solution of (26) at a given kj» and weak H I results
in a neutral stability curve which expresses ¢ as a
function of Q,. The minimum ¢p occurring at 0, = Qp
corresponds to the electric Y Mode threshold Ep=
E.o(QOpr). The reduced electric Y threshold Ry = Ep/E;
and threshold wave vector, Qp, can be studied as
functions of k1, and Hy.

Figures 7 (a—c¢) contain results for the Y Mode. As
individual values of g and g, are unimportant, a con-
venient value (say, 5) is assigned to ea; similarly, ya =
10 "emu. When ry is low, Ry decreases (and Qp
increases) with increasing ki2; the higher the ki2, the
more favourable the Y Mode compared with HD.
Sufficient increase of rn causes the Y Mode to become
quenched. At a given k12, Ry—>1 and Qp—>0 when
rN—rNe so that for rn>rnc, only HD exists. Clearly,
rNc increases with kiz.

A qualitative explanation can be given for some of the
results. HD is associated only with 6 on which H| exerts
a stabilizing influence. This causes the HD threshold,
equation (23), to increase with H|. When H| is absent
and k2 is high enough, the Y Mode sets in with 0 and ¢
instead of HD, because the Y Mode has lower total free
energy than HD. But H| has a stabilizing influence on
both 0 and ¢ of which the existence of the latter is central
to the formation of the Y Mode. When H| is strong
enough, its stabilizing action on ¢ makes the development
of the Y Mode with non-zero wave vector impossible.

These results, shown in figures 7 (a) and 7 (), can be
qualitatively compared with those of §3.1, curves 3 in
figures 1(«) and 1(b). In both cases, the material has
positive susceptibility anisotropies. When E, acts along
no, the magnetically induced Y Mode survives for all
Eyo. This is because the Y Mode distortions perturb
the electric field and E' causes additional destabilizing
torques whose magnitude increases with E,,. In the
present case, the Y Mode deformations cause no
perturbation of the electric field; as indicated above,
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Figure 7. (a—c) Results for the Y Mode in high elastic aniso-
tropy nematics with positive susceptibility anisotropies
(see §5.2 for definitions). The elastic ratio ki12= Ki/K.
The Y Mode is induced in the planar oriented sample by
applying a voltage between the plates z= +4. H| along
x stabilizes the initial orientation. Rigid anchoring hypo-
thesis is employed. In (a) and (b), curves are drawn for
ki2=(1) 15, (2) 10, (3) 5. The reduced electric threshold
and dimensionless wave vector are plotted as functions of
the reduced stabilizing magnetic strength in (a) and (b),
respectively. (¢) rn is the reduced stabilizing magnetic
strength, equation (28), necessary to quench the Y Mode
for a given ki2. The diagrams (b) and (c¢) also serve to
represent results for a material having ¢4 >0 and ya<<0
with the stabilizing H, acting along y. Relevant quantities
are redefined as in § 5.3. The variation of R,, the reduced
electric Y threshold, versus the dimensionless stabilizing
magnetic strength, r,, is shown in figure 7 (d).

the electrically induced Y Mode is suppressed by a
sufficiently strong H .

An estimate of rnc can be made using the approach
of [30]. Briefly, this involves solving the governing
equations of the Y Mode with boundary conditions (22).
Substituting for 6 and ¢, the total free energy F is
expanded in powers of Q,; up to lowest order, F=
No+ Ni Qf,. Using equation (23), No is found to vanish.
The critical point between the Y Mode and HD is found
from N1 =0 which reduces to

n’ n’ tanh j
—(n—2kn—; |+
4( 12 Ye12— (J 4)( ; )

_jm;n¥:m

j=—. (28)

Solving (28) numerically, rnc is obtained as a function
of k12 [figure 7(¢)]. Clearly, rnc increases with kis.
Putting j =0 in (28) results in

ki =kc;

kc=1+ (29)

Y
This is the well known result [ 6, 8, 14] that the Y Mode
can occur only in a material with k12> kc; the limit kc
is the point of intersection of the phase boundary with
the k12 axis in figure 7 (¢). When k12>>>1 (very high elastic
anisotropy), the stabilizing H| required to quench the
Y Mode is also very strong; then, ;=1 and tanh;~1.
In this limit, (28) reduces to rnc~ki2 which yields the
almost straight segment of the phase boundary with unit
slope in the high k12 limit in figure 7 (¢).

5.3. Y Mode with e4>0 and y4<0; a=10
H, acts along y and has a stabilizing influence on ¢;
H, does not directly couple with 6. Hence, the Y Mode
should become quenched if H | is strong enough. The
governing equations can be cast into the form (26) with
the redefinitions

XA
Tt2 E Kin
=52 Zz0 2
=""R:; Re= ;o Es= . 30
¢ 4 ¢ ¢ Es 8A112 (30)

At given values of r, and k12, the reduced Y threshold
is Re=R, at the wave vector Qp. For purposes of
computation, ya = — 10 "emu and ex =5. As the solu-
tion of equation (26) determines the minimum ¢p of ¢ as
a function of Q, at given rn and k12, the Qp versus r,
curves become identical to the Qp versus rn curves of
§5.2, figure 7(b). As the critical point is determined in
the limit of the vanishing wave vector, the phase bound-
ary between the Y Mode and HD will be again given
by figure 7(¢) with a suitable redefinition. Using the
approach of [30] this conjecture can be shown to be
true if we replace rn of equations (27) and (28) by r, of
(30). The only difference lies in the plots of R, versus
ry, figure 7(d). At a given kj», corresponding curves in
figures 7 (¢) and 7(d) coincide only at the critical point
and at zero stabilizing magnetic field. At other points,
R, <<Ry. This can be explained by comparing the values
of ¢p (Y threshold) at a given k2. From equations (30)
and (27),

)(AhZHZ 4
ﬁ=ﬁ+j;%ﬁ—nﬁ;m>u
1 T

Clearly, R, and Ry coincide when H vanishes and also
when Ry equals unity. As Ry<<l, R,<Ry at general
values of the stabilizing magnetic field.
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54. Y Mode with e4>0 and y4<0; o= n/2
H, (acting along z) has a stabilizing influence on 6
but no direct coupling with ¢. The electric splay thresh-
old is E2, equation (25). Using the method of [30], the
Y Mode is found to occur only if k12> kc of (29). As
in §5.2, we solve (26) to calculate the Y threshold
Ep=E.o(Qp) except that now

(B \ AR H (B

() o)
The reduced Y threshold R»=Ep/E>. For a given
k12> kc, the wave vector Op does not vary with increas-
ing H,. Hence, the Y Mode cannot be quenched by
increasing the strength of the stabilizing H |, impressed
along z. When H =0, R2=R, and R,<1. When H
is increased, R» increases from R,. When H | is very
strong, R» asymptotically approaches (but stays below)
unity. This is clear from the discussion of §5.3. At a
given k12, the minimum ¢p occurring at wave vector Qp
has a unique value. In the present case, the reduced
Y threshold has different values for zero and non-zero
H . Clearly,

)(AhZHZ 4
R§=R§+—-'-K (1—R)75; xa<0.
1 T

As Ry<1, Ro<R2. R, and R» coincide in value when
the stabilizing H | is absent for any k12> kc. Ro and R2
both attain unity at k12 =kc regardless of the strength
of H, acting along z. As R, is independent of H |,
differentiation shows that OR2/0H | > 0 showing that R
increases with H .

5.5. Y Mode with e4<<0 and y4>0; o= n/2
The magnetically induced Y Mode is studied exactly
as in §5.4. Under the stabilizing action of E, acting
along z, the HD threshold is H; of equation (24). The
governing equations can be obtained from (26) by
putting rn =0 and redefining

_ealEno(  H\ | Hi
4K, HY | H 4°

Following [30], the critical point calculation shows
again that the Y Mode is possible provided that k12> kc
of (29). As before, the minimum ¢p of ¢ occurring at a
given 0, = Qp depends only on ki2; hence Qp is independ-
ent of E.,. At a given E.,, {p corresponds to the reduced
magnetic threshold rp= H,(Qp)/H;. If ro is the reduced
magnetic threshold at E., =0,

) 4 2
Fo = (A=) 5+, ea<<0.
n

As rp<1, ro<rp. Suppose E., is increased from zero at

a given k2. Then, rp increases from r, tending asymptot-
ically to (but remaining less than) unity when E-, attains
high values. Again, drp/0E-.oc>>0 as ro is independent of
E-o; 1.e. rp increases with E.o.

5.6. General orientations of H | in the yz plane; opposite
susceptibility anisotropies

In §5.3-§5.5, H, is assumed to act exactly along a
symmetry direction. Such a situation may not be realiz-
able in an experiment. The results of §3 and §4 also
create interest in a study of the effects of an oblique H |
on the Y Mode.

In a material with ya<<0 and ea>0, E, along :z
destabilizes and H | in the yz plane stabilizes no. As H |
acts obliquely in the yz plane, 6 and ¢ become coupled.
The initial task is to fix the HD threshold. With depend-
ence on z, the governing equations support two
uncoupled solutions; we choose the one with 6 and ¢
symmetric. Using conditions (22), the a dependent
electric HD threshold is given by

2 n [K1Kan® — dyah’H? (K1 Ca+ K2 S3)]
2 —
&‘Ahz(Kzrc2 — 4)(A]12H1Cgc)

(31)

When a=n/2, Er of (31) reduces to E> of (25). In this
case, ¢ damps out and 6 is influenced by E, and H . In
the opposite limit of &« =0, ¢ again damps out. As 6 now
couples only to the destabilizing E, along z, Er reduces
to the usual splay electric threshold Es of (30).

Similarly, in a material with ya>0 and e4<<0, the
magnetic HD threshold under the stabilizing action of
E, is o dependent:

= K21c2(1(11c3 — gAth:Zo)
F— .
Ayah’[n° (K1 Ca+ K2 S&) — eah” E2, C&]

(32)

When o =n/2, ¢ becomes decoupled and (32) reduces
to Hy of (24). When a=0, 6 damps out; ¢ becomes
coupled to H acting along y so that (32) reduces to
the magnetic twist threshold.

The Y Mode threshold calculation is not straightfor-
ward. Due to the presence of the magnetic cross coupling
terms, 0 and ¢ become linear superpositions of compon-
ents that are out of phase along y (§3.2); while one
component conforms to SOLUTION 1, the other con-
forms to SOLUTION 2 (§3.1). As HD has pure spatial
symmetry, the Y Mode and HD cannot meet at a true
critical point. When the Y and HD thresholds become
equal, Op may not be zero.

57. Y Mode in a material with £4>0 and x4<<0; H | in
the yz plane

As seen from §5.3 and §5.4, the actions of H | at the

two extremities of the a range are quite different. When

H, of arbitrary strength is directed along z, it does not
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affect the occurrence of the Y Mode. If H acts along y,
it can suppress the Y Mode at a critical point. In both
cases, the distortions have definite spatial symmetry.
Once a is changed to a general value, this symmetry no
longer holds. The changeover from Y Mode to HD
under increase of # | should be discontinuous, in general.
Still, one can anticipate that when « is in the neighbour-
hood of zero, the discontinuity should be less, as a
critical point exists at o = 0. Similarly, the non-existence
of a critical point at o« = =/2 implies that the suppression
of the Y Mode should becomes more discontinuous
when « is close to =/2. Hence, the effect of varying a (at
a given H,) and H, (at a given a) should prove
interesting. The reduced Y threshold is defined in terms
of Ef, equation (31), as Rg=E.o/Er. The reduced
stabilizing magnetic strength is defined in terms of the
twist magnetic threshold H» of (30): ru=H /H,. For
purposes of computation, convenient values for some of
the parameters (say, # =0-0l cm, ya= — 10" emu and
ea =95) are used.

Figures 8(a-d) contain plots of Rg versus ry for
different a for one material (k2). At a given «, increase
of ru above some rc causes the Y Mode to disappear
when H | becomes sufficiently strong. But the discontinu-
ity of changeover from Y Mode to HD is much less
when H acts closer to y [figures 8(c) and 8(d); the
transition appears to be almost continuous] than when
H, is directed nearer to z [figures 8 (a) and 8 ()]; in the
latter case, we take rc to be the value of rg at which
Rg=1, though Qp is non-zero. When « is small, rc
diminishes when o takes increasing values [figures 8 (¢)
and 8 (d)]. In the opposite limit [figures 8 (a) and 8 (b)],

Figure 8. Y Mode in high elastic 3/ 2
anisotropy nematics with posit- /
ive dielectric and negative dia-
magnetic  anisotropies. H
acting in the yz plane has stabil- Re
izing action at general «. The
reduced electric Y threshold
(Re) and stabilizing magnetic
strength (ry) are defined in § 5.7;

0.75 &

193

rc diminishes sharply when « is decreased even slightly
from n/2. This indicates the shape of the phase boundary
between the Y Mode and HD [figures 8 (e) and 8 (f)].

At a given «, rc is the value of ry at which Rg equals
unity; rc is plotted against a. The phase boundary has
the same shape for the chosen k1> values but the region
of existence of the Y Mode expands with increase of k2.
The phase diagrams in the range n/2<a<n can be
obtained by reflecting figures 8 (¢) and 8 (/) in the line
a=mn/2. While rc tends to a finite limit at a=0, it
diverges when a—> =/2 in agreement with the results of
§5.3 and §5.4. The valley in the mid-range is due to the
presence of a larger portion of SOLUTION 2 in the
distortions; in this region the Y Mode is suppressed by
even moderately strong stabilizing H .

Three distinct regions are discernible in figures 8 (e)
and 8 (/). In illustration, consider figure 8 (¢). The line
rc=1 (weak stabilizing H,) does not cut the phase
boundary; here, only the Y Mode exists. The line rc =9
(strong H ) cuts the phase boundary only close to a=
n/2. Here, only HD exists over the entire region except
close to a =n/2 where the Y Mode prevails. The inter-
mediate line rc =4 has two intercepts. As « is increased
from zero, we have the Y Mode, then HD and again the
Y Mode (though over a narrow « range). HD (the high
symmetry phase) occurs in a ‘re-entrant’ way when « is
increased from zero (or diminished from =/2).

The above conclusions are reinforced by figure 9
which contains « variations of Rg and QOp. At a given,
moderate, ry, figures 9 (a) and 9 (b), k12 plays an import-
ant role in determining the range of existence of the
Y Mode. When k12 is high (curve 1), the Y Mode prevails

Qp is the dimensionless wave
vector. k13 =10 1in (a—d). Curves
are drawn for o=(1) 1-56,
(2) 1-54, (3) 1-5rad in (a, b) and
for a=(1) 078, (2) 0-39,
(3) 0-0lrad in (c,d). rc is in
the rg at which the Y Mode
and HD thresholds are equal.
Plots of rc versus a for kjx=
(e) 10, (f) 15. Y and HD mark,
respectively, the regions of
existence of these distortions.

0.0

2.0 r

15.0

The ‘re-entrant’ occurrence of
HD at moderately strong H
should be noted.

0.0 r
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Figure 9. Details as in figure 8 except that Rg and Qp are
functions of magnetic tilt, o (see § 5.7). The existence of
the re-entrant HD depends critically on k2 and ru. In
(a,b), the reduced stabilizing magnetic strength, rg =4-5
and k12=1(1) 16, (2) 14, (3) 13. In (¢, d), k12=10 and rg=
(1) 2,(2)3,(3) 4.

over the entire o range. At lower k12, the re-entrant HD
appears; the lower the k12, the wider the range of HD.
For a given material, figures 9 (¢) and 9 (d), increase in
ry causes the appearance of HD in the intermediate a
range. At each point, the change between HD and the
Y Mode occurs discontinuously. When k1, is sufficiently
low or ry high enough (curves 3), the Y Mode does not
even exist as a solution in the intermediate a range.

5.8. Y Mode in a material with £4<<0 and y4>0; H | in
the yz plane

As seen from §5.5, E, acting along z cannot suppress
the Y Mode in a material with k12> kc; the Y Mode is
also described by deformations with pure spatial sym-
metry. If H, is directed along y, HD sets in above the
twist magnetic threshold with E, having no effect on ¢.
Hence, the Y Mode should be suppressed if a is dimin-
ished sufficiently from =/2. At general o, the Y Mode
perturbations do not have pure spatial symmetry and
the solution is effected as in §5.7. The transition between
the Y Mode and HD is discontinuous with respect to
Op. Due to the direct coupling of E, with 6, the value
of a demarcating the phase boundary will depend on
E.,. Hf of equation (32) is used to define the reduced
magnetic Y threshold ru= H /HF; the reduced stabiliz-
ing electric field strength is defined in terms of the

effective electric splay threshold, E;:

3
Kin

EZO 2
RE= ; Es=— 2
s eah

Figures 10 (a) and 10 (b) show the variation of thresh-
old parameters with Rg at three a values close to n/2
for one material. The Y Mode is quenched when the
stabilizing electric field strength is strong enough. Even
a small variation of magnetic tilt from =n/2 causes the
Y Mode to disappear at low Rg. But the Rg necessary
to quench the Y Mode is infinite at exactly a=mn/2
(§5.5). At a =n/2, Qp remains unchanged and ru<<1 at
all Rg. Results for a variation support the above conclu-
sions (these are not shown). The cut-off value of «
necessary to quench the Y Mode decreases (i.e. the o
range of the Y Mode expands) when k2 is increased at
a given Rg. With k2 fixed, the Y Mode is quenched at a
higher o when REg is increased.

Figures 10 (¢) and 10(d) contain phase diagrams for
two materials. Increase of k2 widens the region of
existence of the Y Mode in the Rg-a plane. These
diagrams should be compared with curve 1 of figure
3 (b) (which is drawn for a material with positive suscepti-
bility anisotropies with E, impressed along x and H | in
the yz plane). The shapes of the two phase boundaries

3/ -2 1
1.0 (@) 7~ - 8.0 | (¢)
r RE
Y
HD
0.75 E L 0.0 !
0.0 5.0 1.2 1.5
2.0 r
8.0 |
\ \
Qp 3 \\2 AN Re
| \ \ Y
ONEN \ (d)
\ ll \ HD
1.2 & ! g0 .
0.0 Re 5.0 1.2 o 1.5

Figure 10. Y Mode in high elastic anisotropy nematic with
negative dielectric and positive diamagnetic anisotropies.
k12=10; the reduced magnetic Y threshold rg and the
reduced stabilizing electric strength Rg are defined in § 5.8.
In (a) and (b), curves are drawn for a = (1) 1-56, (2) 1-54,
(3) 1-52rad. In (¢) and (d), the critical Rg necessary to
quench the Y Mode is plotted as a function of « for two
materials with k2= (c¢) 10, (d) 15. Compare (c¢) or (d) with
curve 1 of figure 3 (5).
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are similar except that one is obtained from the other
through a reflection in a vertical line.

6. PD under E applied along y
This configuration is similar to that studied in §2-§4
except that the electrodes are assumed to be at y = +¢
with 2¢>>2h. In the absence of deformation,

EO:(OyEyOaO); Eyo:VY/2g~

Under distortion, n and E are again given by equation
(1). In (3), the first term is replaced by eaEyo¢ . In (2),
fE 1s redefined to be

A _8AE}70¢ gAEfo 2
E= x— ;
4 Vo 8n

in (4), Ug vanishes and in (5),
2
_EA E]vo EA E],O
Up= ¢— V.
4 4

Rigid anchoring hypothesis is assumed. When perturba-
tions depend only on z, v becomes decoupled from 6
and ¢. In a material with ex <0 and ya >0, the magnetic
HD threshold is

2 3 2
Hé— Kin (Kan™ — eah Efo)
4XA112[Tc3(K1 Cgc+ KzSgc) — gAlzzEfoSé] ’

(33)

When H acts along z, ¢ becomes damped out. As E,

acts along y, 6 is coupled only to H  so that (33) reduces

to the magnetic splay threshold. When o« =0, 8 damps
out and

5 o K> T[_2 gAth}Z,O

HG(@=0) )(Ahz 4 4nK>

with a twist appearing under the stabilizing action of E,
and destabilizing action of H ;.

In a material with yo<<0 and es >0, the electric HD
threshold is

2 n [K1Kan® — dxah*H2 (K1 Ca+ K2 58]
8A112(K1Tc2— 4XA112Hi_S§c) '

(34)

When o =n/2, 6 gets decoupled from ¢ and (34) reduces
to the electric twist threshold. When H is directed
along y, a twist distortion appears above the threshold

2 (aZO)—4nK2 Tc_z_)(Athzl
¢ 8A112 4 K>
under the joint actions of stabilizing H, and

destabilizing E,.

Out of the three PD Modes, the Y Mode does not
involve y. The X Mode can be shown not to exist in
materials with k12>1 as the neutral stability curve
increases continuously with wave vector, exhibiting no

minimum. This is clear from the governing equations as
y.x 1s the only electric perturbation entering the torque
equations. In a material with ea>0, y, has only a
stabilizing influence. Even for &4 <<0, the destabilizing
effect of w is not strong as v, is out of phase with ¢
along x, the direction of periodicity. Hence, neither the
X nor the XY Modes are studied here.

6.1. Y Mode in materials with e4<<0 and y4>0

When H | acts along z, HD involves only 6 and occurs
at the splay Fréedericksz threshold, Hs. As 6 does not
couple with E,, the HD threshold is independent of Ey..
In materials with high elastic anisotropy, the Y Mode
(SOLUTION 1) can set in if k12> kc of equation (29).
In the present case, E, has a stabilizing influence on ¢
and exerts no direct torque on 6. The governing equa-
tions can be recast into the form (26) with r~ replaced
by Re where

_Ep _nf 4nka\”
RE= ; ET= - ;
ET 2h EA

H 2 u n [ K1 12
= ;o Hs=_[—"1 .
J 2Hs 2h | xA

Clearly, Et is the equivalent electric twist Fréedericksz
threshold. Plots of threshold parameters as functions of
Rg are similar to those in figures 7 («) and 7 (b). The
phase boundary is defined by (28), figure 7 (¢), where
Rgc replaces rnc.

With H | in the yz plane, the results are more inter-
esting. The Y Mode is now a superposition of
SOLUTIONSs 1 and 2. The reduced Y threshold, ru=
H | /HG, is defined in terms of Hg, equation (33), while
the reduced stabilizing electric field, Rg, is defined in
terms of Et as above. The material chosen has k1> = 10.
In the absence of Eo, the Y Mode is suppressed if a < ac;
ac~1-27rad. When E,, is increased from zero, the
Y Mode is quenched at sufficiently high Rg [figures
11 (a-d)]. Regardless of a, the Y Mode is quenched at
the same Rg. In the low Rg range, however, increase of
Rg actually appears to favour the Y Mode with ru
decreasing and Qp increasing. This variation becomes
pronounced when a>ac [figures 11(c) and 11(d)].
Although HD prevails at low Rg, the subsequent
decrease in rg actually causes the Y Mode to make a
‘re-entrant’ appearance before being quenched again.

A possible reason for this is that 6 does not get
influenced directly by the stabilizing action of E,. When
E,, is high enough, the damping it imposes on ¢ is
sufficient to quench the Y Mode even though 6 is not
directly affected by E,. When E,, is low, however, its
stabilizing influence on ¢ may be partly overcome by
H, provided that H | acts sufficiently close to y. At low
a, H | also exerts a weak destabilizing torque which may
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Figure 11. Plots of Y Mode threshold parameters in a mat-
erial with e4<<0 and yao>0. E, along y has a stabilizing
influence while H, in the yz plane destabilizes no. k12 =
10. The dimensionless Y threshold, rg and the reduced
electric strength, Rg are defined in §6.1. In (a) and (b),
curves are drawn for o« =(1) 1-57, (2) 1-35rad. In (¢) and
(d), a=(1) 1-2, (2) 1-1rad. An increase in Rg causes the
Y Mode to appear in the ‘re-entrant’” way (c,d). At
sufficiently high Rg, the Y Mode is quenched.

help 6 to develop. As 6 is not directly damped by E,,
the Y Mode may actually show a revival. The a variation
(figure 12) complements the results of figure 11 and
also indicates the shape of the phase boundary. As
REg increases, the a necessary to quench the Y Mode

0.8 | (@

diminishes. The transition between the Y Mode and HD
is discontinuous but the degree of discontinuity becomes
less when RE is high enough [compare figures 12 (a) and
12 (b) with 12 (¢) and 12(d)]. The transition points also
come closer when Rg is sufficiently high [figures 12 (c)
and 12(d)].

Not surprisingly, the phase boundary takes the form
shown in figure 12(e) and 12(f), bearing a striking
resemblance to the phase boundaries derived elsewhere
for a homeotropic sample (see figure 1 of [21]; a
reflection in the o axis is needed before comparison) as
well as some in this work [see figures 8 (¢) and 8(f)].
The higher the k12, the wider the region of existence of
the Y Mode. The vertical intersection of the phase
boundary with the o axis occurs at ac for the given
material; the phase boundary again becomes vertical at
ao<ac. By drawing vertical lines at different «, three
distinct regions can be recognized: at n/2> a> ac, the
Y Mode exists at low Rg and is quenched when REg
takes sufficiently high values; at a0 < a<< ac, the Y Mode
appears re-entrantly between HD; at 0<<a<<ao, only
HD prevails.

7. Conclusions

Static PD thresholds have been studied when H and
E, act simultaneously on a planar nematic sample with
no along x; the direction of periodicity is along x
(X Mode) or along y (Y Mode). In the main, the rigid
anchoring hypothesis has been utilized, along with linear
perturbation analysis; in one case, the anchoring is
assumed to be weak. Choice of different susceptibility
anisotropies as well as symmetry directions for E, leads
to a variety of phase diagrams for the distortions.

1.0

Figure 12. Details as in figure 11 0.6
except that the magnetic angle
o is varied. In (a) and (b), Rg=
(1) 1,(2)2,(3) 3. In (¢) and (d),
Rg=(1) 4, (2) 5, (3) 6. This
clearly indicates the shape of
the phase boundary between
HD and the Y Mode. Phase
diagrams are drawn for k2=
(e) 4, (f) 6. Compare with phase
boundaries in figure 1 of refer-
ence [21] as well as those in

figures 8 (e¢) and 8 (f) (see also
§6.1).

0.9
0.2

2.0
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Flexoelectricity is generally neglected but a qualitative
discussion of its possible effect is given in one case. The
main conclusions are the following.

Given that E, is along x, parallel to no; and H | in
the yz plane makes angle o with y; the material is SCB
with ea, ya>0. Both PD Modes appear because of
destabilizing torques arising from electric perturbations.
If E, is strong enough, the Y Mode is favourable with
H | acting along z [figures 1(a) and 1(h)]. If H, is
rotated towards y, the X Mode sets in causing a discon-
tinuous change in the periodicity wave vector [figures
1(¢), 1(d) and 2)]; further rotation of H, quenches the
X Mode in favour of HD. These effects arise due to an
increase in the asymmetry of the perturbations. If E, is
weak enough, only HD prevails, regardless of the mag-
netic angle [figure 3(a)]. The results are substantially
unchanged for a material with high elastic anisotropy
except that the Y Mode now prevails even when E, is
absent [figures 1(a), 1(b) and 3 (h)]; in particular, the
Y Mode is never quenched by a strong, stabilizing Eo.
Weakening of the azimuthal anchoring encourages the
formation of the Y Mode in thin samples (figures 4 and
5); the presence of Ky has a similar effect when E, is
weak (figure 6).

Sections 5 and 6 deal with the Y Mode in high elastic
anisotropy materials with E, acting along z or y. In
both cases, the Y Mode distortions do not perturb E,.
When susceptibility anisotropies are both positive (§5.2),
the Y Mode induced by E, acting along z can be
suppressed by a stabilizing H| impressed along x (com-
pare figure 7 with figure 1). When susceptibility aniso-
tropies have opposite signs and H, acts along a
symmetry direction, results for the Y Mode can be
deduced by simply comparing the forms of governing
equations with those of §5.2 (see §5.3-§5.5). When H |
acts in the yz plane, the phase boundaries between HD
and the Y Mode bear remarkable shape similarity in
different cases except that the diagrams have to be
reflected in a suitable mirror before being brought into
qualitative superposition with each other. For example,
compare figure 3 (b) (curve 1) with figure 10 (¢) or 10 (d);
also compare figures 8 (e) and 8(f) with figures 12 (e)
and 12 (f).

The results of this work must be interpreted strictly
within the framework of the linear perturbation hypo-
thesis which leads to the solution of an eigenvalue
problem in every case, so that the actual values of the
perturbation amplitudes are not known. Hence, quan-
titative deduction of post-threshold phenomena is
impossible. When a threshold is optically detected, the
accompanying deformation is already non-linear. This
must be borne in mind while comparing observed
threshold parameters with their theoretical counterparts.
Some possibilities connected with non-linear effects are

discussed below with examples from figures 1(a) and
1(b) of §3.1.

(i) When the stabilizing E, is weak, only the mag-
netic HD threshold is relevant in SCB; the X and
Y thresholds do not exist. Even if HD appears at
the linear threshold, further increase of # | causes
HD to develop as a non-linear deformation. The
non-linear HD may undergo instability against
periodic perturbations when H | is high enough.
Such an instability would be analogous to the
one studied in [7].

(i1) The true XY Mode linear threshold does not
exist in any of the examples studied in this work.
The possibility exists, however, that the XY Mode
might occur due to the destabilization of one of
the other deformations. When E, is strong
enough, the Y Mode should develop above a
magnetic threshold. If H is raised above the
Y threshold, the Y Mode develops into a non-
linear distortion which may undergo instability
to result in the XY Mode.

(iii) As per equation (10), SCB has ya>0 and the
stable orientation of n is one parallel to H ;. Even
if a stabilizing E, acts, it is possible that n in a
large portion of the sample will align along H
if H, is high enough. Suppose the Y Mode
develops at the Y threshold. Increase of H | to a
high value should cause alignment of n by H
leading to a disappearance of the stripes. This
non-linear effect has been observed in a nematic
having high elastic anisotropy [6], but with
E, absent.

The thresholds studied in this work describe the
change from the undistorted alignment, no, to a deformed
state. The perturbations imposed are mathematical; the
governing equations do not have driving terms which
cause the perturbations. These assumptions may be
realistic in a thin sample when E, acts normal to the
plates (§5) and the effects of the lateral edges of the
sample are insignificant. When E, acts in the sample
plane, the inter-electrode gap may not be large compared
with the sample thickness. Studies on the homeotropic
configuration show [31] that a thresholdless distortion
develops even in the a.c. case due to thermal fluctuations
as well as inhomogeneity in E (this causes field induced
biaxiality [17]). Similar effects may also occur in the
planar configuration.

Flexoelectricity has been neglected in this work. This
limitation has to be seen in conjunction with the use of
only the ‘soft’ boundary condition for v in §3 and §4.
As flexoelectricity is a polar effect, scaling with respect
to sample thickness may not be complete even with the
rigid anchoring hypothesis. The mixing of solutions with
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pure spatial symmetry caused by flexoelectricity may
have considerable influence on the linear thresholds in
a thin sample. As indicated earlier (§4.3), the study of
PD thresholds in the presence of a d.c. electric field falls
outside the scope of this work. The thresholdless HD
that develops, as well as its subsequent instability under
periodic perturbations, has to be studied along the lines
of [19] taking into account electric perturbations.
Attempts must also be made to incorporate the full set
of boundary conditions for E. The nematic is assumed
to be an insulator. A real nematic used in an experiment
generally has non-zero electrical conductivity whose
anisotropy may lead to convective PD [3,4,14] and
not the static PD studied in this work. Interesting results
have been obtained for conducting nematics under the
tacit assumption of static equilibrium [9]. As an
example, a static PD threshold is shown to exist in a
conducting nematic under appropriate assumptions in
one configuration (see the Appendix).

Apart from experiments to detect the static PD thresh-
olds, those involving dynamic effects may prove inter-
esting. For instance, the application of a strong
destabilizing field is known to lead to a variety of
transient periodic dissipative structures [32]. The con-
figuration of §3 and §4 should prove interesting in this
regard. Experiments with rotating magnetic fields have
led to the discovery of a number of novel patterns in
the homeotropic geometry [33]. As shown in §3, the
nature of static PD changes when the tilt of H is
changed in a plane normal to no; it should be interesting
to investigate the resulting deformation when H is
rotated with some angular velocity.

The work of [27] concerns nematics with defects
confined to cylindrical cavities. PD in uniformly aligned
ground states has been theoretically studied [34] with
the nematic confined to the annular space between two
long coaxial cylinders. The results are similar to those
obtained for a flat sample when the ratio of the cylinder
radii is close to unity (i.e. when the sample thickness is
small compared with the average radius) except that the
wave vector (related to the number of domains) may be
quantized for some PD Modes. With the invention of
techniques to impart specific director alignment on
cylindrical surfaces [35], controlled experiments on
cylindrical geometry appear feasible. Several results of
[20,21] as well as those of §3 and §4 have theoretical
equivalents in cylindrical geometry [36]. The results of
§3 can be extended to n, and E, along x, the cylinder
axis, and a radial magnetic field. It appears [36] that
PD with azimuthal modulation (analogue of the
Y Mode) may set in when the ratio of radii is close to
unity. As the sample is closed with respect to the
azimuthal variable, the wave vector for azimuthal modu-
lation is quantized. An increase of sample curvature

makes the perturbations more asymmetric. Then, PD
with x modulation (analogue of the X Mode) appears
to be more favourable; this PD Mode has a wave vector
that can vary continuously with parameters.

Appendix

We assume that electrical conductivity exists in the
rigidly anchored nematic for the configuration of §2 and
§3.1 with E, acting along x and H acting along z (a =
n/2). The principal conductivities are ¥ and X, with
the anisotropy Ya=2X|—X,. In the absence of per-
turbations, the current density 2 Exo exists along x.
Under perturbation, the current density deviates away
from x; the torque equations (4) and (5) remain but (3)
is not valid as divD =4np where p is the free charge
density. A study of the perturbations in equilibrium is
possible by ignoring pE,,, the body force density along
x; this assumption may be valid in some materials if E,,
is not very high. Then, equation (3) is replaced by the
static limit of the equation of continuity,

EAExo(¢,y + 9,:) - EH Vxx — EJ_(II/,yy+ ll/,::) =0.
(A1)

As glass is an insulator, the z component of the perturbed
current density should vanish [29]. As 6 and ¢ also
vanish at the boundaries, the condition (9) is recovered.

For the sake of illustration, consider the X Mode.
Following the procedure of §3.1, the neutral stability
curve for SOLUTION 1 is found to be given by equation
(12) with the redefinitions

2,2
P eAX 1 Exoh
pr="t pp=" (A2)
x, 4nK| x

When Q, vanishes, one recovers the expression for Hf
(11) with the new definition for wg. The X Mode is
found to exist as a solution with threshold lower than
that of HD only if

3 2

K3X
B=5— 2= (A3)

E.w>E3; 2 R
h EHEAEA

A necessary condition for E3 (and also the X Mode) to
exist is that éa¥a>0. The reduced electric field is now
defined as Rg = Eo/E3. Computation is done by choos-
ing an appropriate value for X)/x,. The solution for

the Y Mode proceeds as in §3.1; the Y Mode is found
to be uniformly more favourable than the X Mode for
H, directed along z. The variation of threshold para-
meters with Rg and «, as well as the phase boundaries,
are very similar to those contained in figures 1-3. With
decrease of o from n/2, the wave vector changes discon-
tinuously from y modulation to x modulation; when «
is low enough, the X Mode also becomes quenched and
only HD exists.
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