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L iquid Crystals, 1998, Vol. 24, No. 2, 177 ± 199

Magnetic and electric ® eld induced periodic deformations in

planar oriented nematics

by U. D. KINI

Raman Research Institute, Bangalore Ð 560 080, India

(Received 23 July 1997; accepted 6 August 1997 )

Using the continuum theory in the linear perturbation limit, the formation of static periodic
distortions (PD) is studied in a planar nematic sample under the action of crossed electric
(E ) and magnetic (H ) ® elds. In a nematic dielectric with positive dielectric and diamagnetic
anisotropies (eA >0, xA>0 ) , the wave vector of H induced PD depends on the tilt of H in a
plane normal to the initial director orientation no when E is in the sample plane; change of
magnetic tilt may cause discontinuous changes in the wave vector. Similar results are obtained
when electrical conductivity is taken into account with hydrodynamic e� ects being assumed
absent. Calculations are extended to a study of PD in nematics with high elastic anisotropy
for di� erent signs of eA and xA . When such materials have susceptibility anisotropies of
opposite sign, change in magnetic tilt may cause r̀e-entrant’ appearances of distortions. When
anchoring is weak enough, the saddle± splay elastic constant K24 can in¯ uence the domain of
existence of PD. Possible e� ects of ¯ exoelectricity as well as results for cylindrical geometry
are qualitatively discussed.

1. Introduction shown [6, 8] that when the elastic anisotropy is high
enough, the PD threshold is lower than the HD thresh-The continuum theory [1 ± 4] satisfactorily explains

many e� ects arising from the action of external magnetic old. Theoretical interpretations of the e� ects of H are
generally straightforward as the ® eld is not appreciably(H ) and electric (E ) ® elds on nematic samples. The

nematic director (n) can be uniformly oriented (along modi® ed by the medium even in the presence of spatial
gradients of n.no , say) in a sample by appropriate treatment of the

bounding planes; the surface treatment also determines In contrast to magnetic e� ects, the e� ects of E are far
more diverse, complex and interesting since E inside thethe director anchoring strength [5]. The planar (no

parallel to the sample planes) and the homeotropic (no medium is strongly a� ected by director gradients [9],
¯ exoelectric polarization (P ) [10], electrical conduc-normal to the sample planes) alignments are commonly

used. For simplicity, the rigid anchoring hypothesis is tivity, etc. A number of studies have been reported on
planar oriented samples [3, 4]. As the coupling betweenfrequently employed in theoretical calculations. H or E

either stabilizes or destabilizes no depending upon the P and E is linear, the in¯ uence of P can be greatly
reduced by using an a.c. ® eld of su� ciently high fre-sign of the relevant susceptibility anisotropy of the

material and the direction of the ® eld relative to no . quency. Under the action of a d.c. ® eld, however, PD
occurs even in materials with low elastic anisotropy dueThe e� ect of simultaneous application of a stabilizing

and a destabilizing ® eld along symmetry directions to ¯ exoelectricity [11]. The variation of the principal
dielectric constants caused by an increase of the electric(crossed ® eld con® guration) is also studied.

The application of H normal to no leads to the frequency also leads to PD in some nematics [12].
When di� erent director anchoring strengths areaperiodic or homogeneous distortion (HD) above a well

de® ned FreÂ edericksz threshold in materials with moder- imparted to the sample planes, even the magnitude of
the d.c. FreÂ edericksz threshold changes with the voltageate elastic anisotropy; the optical detection of HD helps

in the evaluation of the splay (K1 ) , twist (K2 ) and bend polarity [13]. An impure nematic has low electrical
conductivity whose anisotropy can be controlled by(K3 ) curvature (bulk) elastic constants if xA is known.

In nematics with high elastic anisotropy (e.g. high di� erent methods [3]. When such a material is subjected
to E, a variety of convective electrohydrodynamic instab-molecular weight nematic or nematic close to the nem-

atic± smectic A transition), the distortion above a mag- ilities set in. Di� erent mechanisms that cause these
instabilities have been theoretically identi® ed [3, 4, 14]netic threshold may be periodic (PD) [6, 7]. It can be
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178 U. D. Kini

taking explicit account of electrical conductivity, charge should be interesting to compare the phase diagrams
obtained for di� erent materials.injection, etc. Though dynamic e� ects generally accom-

pany the presence of conductivity, theoretical attempts Work referenced above concerns ¯ at nematic samples
and defectless deformations involving bulk curvaturehave been made to study the e� ect of conductivity on

static HD [9]. It should be interesting to extend these elastic constants. With the advent of polymer dispersed
liquid crystal (PDLC) displays (see [26] for a review),studies to include static PD.

A number of e� ects have also been observed in a number of studies on singular nematic con® gurations
con® ned to cylindrical cavities have led to the determina-homeotropically aligned nematic samples with E

impressed in the sample plane. A d.c. ® eld causes thresh- tion of the (saddle± splay) surface elastic constant K24 of
some nematics [27]. The e� ect of K24 on PD may beoldless HD due to ¯ exoelectricity in a weakly anchored

sample [15]. With strong anchoring, an a.c. ® eld pro- considerable even in ¯ at, su� ciently thin samples [28].
It should be interesting to study the in¯ uence of K24 onduces a ® rst order FreÂ edericksz transition [16, 17] in a

material (such as 5CB) with positive susceptibility aniso- PD for di� erent ® eld con® gurations in a ¯ at sample
when the director anchoring is weak.tropies [18]. With an additional stabilizing H , PD

appears above a well de® ned threshold [17]. A non- With the above motivation, the governing equations
are set up along with general boundary conditions inlinear [19] and a linear [20] mathematical model have

been proposed to explain the electric PD threshold as a § 2. In § 3, results are presented for di� erent deformations
under the rigid anchoring hypothesis with E acting indielectric e� ect. The analysis of [20] is mathematically

simpler and gives an insight into the instability mechan- the sample plane. These calculations are generalized to
the ® nite anchoring case in § 4 with a brief summary ofism which comprises mainly the additional destabilizing

torques resulting from periodic electric perturbations. possible e� ects of ¯ exoelectricity. In § 5, PD caused by
high elastic anisotropy is studied for di� erent materialResults for rigid anchoring [20] are in qualitative agree-

ment with the ® ndings of reference [17]. types with E impressed normal to the sample planes.
These results are contrasted with those of § 6 obtainedThe model of reference [20] has been extended [21]

to the study of PD in homeotropic samples of materials for E acting in the sample plane normal to no . Section 7
summarizes the main results of this work and indicates(such as M1 [22] and CCH± 7 [23]) having susceptibility

anisotropies of opposite signs, with E and H acting in possible extensions to the study of PD in cylindrical
geometry. The Appendix contains a purely formalthe sample plane; depending upon the material para-

meters, one can study either the electric or the magnetic derivation of the PD threshold in the presence of
electrical conductivity.PD threshold. The PD threshold as well as the period-

icity wave vector depend strongly on the angle between
2. Governing equations; boundary conditions for EH and E [21]. The pretilt of no away from the homeo-

parallel to the platestropic suppresses PD [24] so that only HD sets in
The nematic insulator is initially aligned along x withunder the action of the destabilizing ® eld. A transition

no= (1, 0, 0) between parallel glass plates z =Ô h andfrom PD to HD occurs due to the variation of ® eld
¯ at electrodes at x =Ô g such that the electrode gapstrengths as well as that of the angle between the ® elds;
( 2g) is large compared with the sample thickness (2h ) ,a variety of phase diagrams now results. This transition
with the region of interest being close to x =0. Ais of second order for rigid anchoring [21], but becomes
potential di� erence VX is impressed between thediscontinuous when the director is weakly anchored [25].
electrodes. The magnetic intensity H is either along x,Close mathematical similarity exists between the gov-

erning equations for homeotropic and planar con® gura- H
d
= (H

d
, 0, 0 )

tions [1± 4, 17]. It is, therefore, possible that PD of the
or in the yz plane,kind studied in [20, 21, 24, 25] may also be obtained as

a solution for planar no in nematics with moderate H)= ( 0, H)C
a
, H)S

a
) ; C

a
=cos a ; S

a
= sin a.

elastic anisotropy when E is impressed in the sample
When a =p/2, H) is along z ; when a vanishes, H)plane. This provides the motivation to study the initial
is along y. These a values correspond to symmetryplanar orientation. So far, PD induced by elastic aniso-
directions for planar alignment. Inside the sample, thetropy has been studied only in high molecular weight
unperturbed electric ® eld ismaterials with positive susceptibility anisotropies [6, 8].

Such materials with opposite signs of susceptibility Eo= (Exo , 0, 0 ); Exo =VX /2g.

anisotropies may also exist. The previously developed
When perturbations are imposed on no , the electric ® eldmathematical models [8] can be extended to the study
also becomes modi® ed,of PD in such cases, especially with E impressed along

di� erent symmetry directions with respect to no . It n = (C
h
C

w
, S

w
, S

h
C

w
) ; E =Eo +E ¾ ; E ¾ = Õ = y (1 )
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179Periodic deformations in planar oriented nematics

where h, w and y are functions of x, y and z. Maxwell’s then, Maxwell’s divergence equation results [29]:
curl equation has been employed to express the electric

eA Exo (w,y+h ,z ) Õ e
d
y ,xx Õ e)(y ,yy+y ,zz) +AF=0;

perturbation as the gradient of a scalar potential, impli-
AF=0. (3 )citly making the assumption that the nematic is an

insulator. The perturbations and their derivatives are The modi® cations of E are connected to derivatives of
assumed to be small so that only terms up to linear h and w. The ¯ exoelectric term AF is neglected for the
order are retained in the governing equations. For present. The two independent components of the torque
constant potential di� erence between electrodes, the equation result from a variation of F with respect to h
total free energy F of the sample is and w :

K3h ,xx+K2h ,yy+K1h,zz+a
h
h+ (K1 Õ K2 )w,yz

F = PA
WL dL+AW S (z =h ) +AW ¾S (z=Õ h ) ;

+a
w
w +U

h
=0 (4 )

K3w ,xx+K1w ,yy+K2w,zz+b
w
w+ (K1 Õ K2 )h ,yz

WL =
K1

2
(w

2
,y+h

2
,z ) +

K2

2
(w

2
,z+h

2
,y ) +

K3

2
(w

2
,x +h

2
,x )

+b
h
h+U

w
=0 (5 )

+ (K1 Õ K24 )w ,yh,z+ (K24 Õ K2 )w,zh ,y a
h
=xA H

2
)S

2

a
, a

w
=b

h
=xA H

2
)S

a
C

a
, b

w
=xAH

2
)C

2

a or

a
h
=b

w
=Õ xA H

2

d
, a

w
=b

h
=0;

Õ
e
d

8p
y

2
,x Õ

e)
8p

(y
2
,y+y

2
,z ) + fM + fE+ fF ;

U
h
=Õ

eA Exo

4p
y ,z Õ

eA E
2
xo

4p
h ;

fF=0; fE=
eA E

2
xo

8p
(h

2+w
2
) +

eA Exo

4p
(wy ,y+hy ,z ) ;

U
w
=Õ

eAExo

4p
y ,y Õ

eA E
2
xo

4p
w. (6 )

fM =
xA H

2

d
2

(h
2+w

2
) if H)=0 or

The volume torque does not depend on K24 which
appears only in the surface elastic torque relevant to the

fM =Õ
xA H

2
)

2
(S

ah+C
aw)

2 if H
d
=0; boundary conditions:

qWL

qh ,z
+B

h
h =0;

qWL

qw,z
+B

w
w =0 at z =h ;

W S=
B

w
2

w
2+

B
h

2
h

2
; W ¾S =

B ¾
w

2
w

2+
B ¾
h

2
h

2 (2 )

qWL

qh ,z
Õ B ¾

h
h=0;

qWL

qw,z
Õ B ¾

w
w=0 at z =Õ h;where L is the sample volume, WL the volume free

energy density [27], A the area of either plate, W S and
W ¾S the surface free energy densities at the two plates in qWL

qh ,z
=K1h,z+ (K1 Õ K24 )w ,y+t

h
; t

h
=0

the Rapini± Papoular form [5] and a subscripted comma
denotes partial (or ordinary) di� erentiation; eA=e

d
Õ e)

where e
d

and e) are, respectively, the dielectric constants qWL

qw ,z
=K2w,z Õ (K2 Õ K24 )h ,y . (7 )

parallel to and normal to no ; B
h
, B ¾

h
are polar anchoring

strengths at z =Ô h, respectively; B
w

and B ¾
w

are the The term t
h

is useful for including ¯ exoelectric contribu-
corresponding azimuthal anchoring strengths. While tions. Clearly, h and w will not vanish at the boundaries
only the polar anchoring strength is relevant for homeo- as is true for rigid anchoring. The third boundary
tropic alignment [25], both anchoring strengths appear condition is related to y . While E inside the glass
in the present case. Terms of zero and ® rst order have (isotropic dielectric) plates is along x, E inside the
been dropped from WL as they seem to be inoperative. nematic, from equation (1), is perturbed. Inside glass,
Terms corresponding to ¯ exoelectricity are omitted for the electric induction D is also directed along x so that
the present ( fF=0 ); this may be a meaningful assump- the normal component (Dz ) vanishes. Continuity of
tion if VX is time varying with a su� ciently high fre- D z at the interfaces between the nematic (anisotropic
quency. However, possible e� ects of ¯ exoelectricity are dielectric) and glass implies [29] that
brie¯ y discussed in § 4.3.

eA Exoh Õ e)y ,z+lD =0 at z =Ô h ; lD=0. (8 )Of the three perturbations, h and w are the angular
variations of the unit director. The governing equations The ¯ exoelectric contribution (lD ) is ignored at present.
are derived by minimizing F with respect to each of the As done earlier ([20, 24, 25]; see also note 26 in [21]),
three perturbations. While studying a virtual variation the additional condition of continuity of tangential com-

ponents of E at the interfaces is not explicitly imposed.of one variable (say, y) , the other two are held ® xed;
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180 U. D. Kini

The solution of equations (3)± (5 ) with (7) and (8) In other words, the dimensionless quantity s =Bh/K &1.

With B ~10Õ
2 erg cm Õ

2, h ~10 Õ
2 cm and K ~10 Õ

6 dyne,generally reduces to that of an eigenvalue problem.
Depending upon the attributes of the distortion, the s~10

2; this would correspond to strong ancho-
ring. On the other hand, s ~1 if h ~10 Õ

4 cm (very thinrequired subset of terms from equations (3)± (8 ) is
chosen. H is also selected for a given con® guration such sample). Then, the bulk elastic torque may cause

non-vanishing h and w at the boundaries; the in¯ uencethat it either stabilizes or destabilizes no . Without loss
of generality, Exo (or VX ) can be assumed to be positive of K24 may also be felt on the distortion. Thus, sample

thickness is a relevant parameter in thin samples withbecause the transformation
weak anchoring.

Exo � Õ Exo , y � Õ y
The general case of di� erent anchoring strengths at

the two boundaries introduces four parameters intoleaves equations (3)± (8 ) unaltered. In general, four
di� erent solutions can be studied: equations (7). For simplicity, we assume that the corres-

ponding anchoring strengths at the two plates are equal:
Homogeneous deformation HD : perturbations vary
with z. B ¾

h
=B

h
; B ¾

w
=B

w
.

X Mode : PD with wave vector along x ; perturbations
With this, it is possible to study uncoupled solutionsdepend on x and z.

with de® nite spatial symmetry relative to z =0 in manyY Mode : PD with wave vector along y ; perturbations
situations.vary with y and z.

XY Mode : PD with wave vector lying in the xy plane
(plane of the sample); perturbations depend on all 3. Material with positive eA and xA

three coordinates. The material chosen is 5CB [18] with the material
parameters at 28 ß C:The action of K24 in the surface torques (7) is opposed

to that of K2 or K1 . In addition, K24 appears in equation (K1 , K2 , K3 ) = ( 5´21, 2´71, 6´67 ) Ö 10 Õ 7 dyne;
(7) only when h and w depend on y. Hence, K24 a� ects

xA=1´1 Ö 10 Õ 7 emu;only the Y and XY Modes. An estimate of the magnitude
of K24 is obtained by restricting the quadratic form (e

d
, e)) = ( 17´86, 7´25 ) ; eA=10 6́1. (10)

representing the elastic free energy density in WL to be
de® nitely positive. Apart from the four elastic constants As Eo stabilizes no , it is natural to consider H) with

H
d
=0. The anchoring is assumed to be rigid.being de® nitely positive, one must have

K24 <2K1 ; K24<2K2 .
3.1. Results for rigid anchoring with a =p/2

If K1>K2 (which is usually the case), the second restric- Now, equations (3) ± (8 ) assume a particularly simple
tion is taken; in the opposite case, the former is assumed. form. We start with HD; with dependence on z, w gets
In either case, the maximum value of K24 is of the same decoupled from h and y in equation (5). Due to equation
order of magnitude as K1 or K2 . (9 ), w damps out in the sample as H) acts along z and

In reality, the anchoring strengths ~10 Õ
4 to w is in the xy plane. Equations (3) and (4) lead to a

10 Õ
2 erg cm Õ

2 [5]. The strong anchoring limit is particu- second order di� erential equation in h supporting two
larly interesting as it yields analytical solutions in many uncoupled solutions. We choose the solution with h
cases. In this limit, the magnitude of the product of symmetric (and y antisymmetric). With the ansatz h=
anchoring strength and director perturbation in equa- hM cos (qz/h ) , it is required to ® nd the lowest H) at
tions (7) is large compared with the derivative terms which hM is non-zero. This yields the splay FreÂ edericksz
representing the elastic surface torque, so that the magni- threshold HF ,
tudes of h and w at the boundaries are small at threshold
in spite of a deformation in the bulk. In the extreme

HF=C(q
2+vE )

K1

xA h
2D1/2

; vE=
eA e

d
h

2
E

2
xo

4pK1e)
; q =

p

2
.case of rigid anchoring, both perturbations will vanish

at the boundaries. Then, equations (7) and (8) reduce (11)
to

Clearly, the above is an eigenvalue problem. At HD
h=0; w=0; y ,z=0 at z =Ô h. (9 )

threshold, we only know that hM is non-zero but its
value is not known. The factor e

d
/e) appears in vE as aFor moderate ® elds, the PD wavelength at threshold

is ~ the sample thickness. Hence, the surface torque consequence of the torque due to y ,z in equation (4).
The X Mode again does not involve w. Equations (3)~Kh/h where K is an average elastic constant. This

should be small compared with Bh for strong anchoring. and (4) now support two uncoupled solutions:
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181Periodic deformations in planar oriented nematics

X Mode SOLUTION 1: h is symmetric and y For Exo<E1 , the X Mode cannot exist and only HD is
possible. It is instructive to compare E1 with EM (seeantisymmetric.

X Mode SOLUTION 2: h is antisymmetric and y equation (18) of [21]). EM can be obtained from E1 by
substituting K1 for K3 and interchanging the dielectricsymmetric.
constants. The reduced electric ® eld RE is de® ned usingSOLUTION 1 has the same spatial symmetries as HD
E1 ,and the X Mode becomes an extension or generalization

of HD. The ansatz for a closed solution is
RE=

Exo

E1
.

(h, y) =[hM cos (qz/h ) sin (qxx ) , y M sin (qz/h ) sin (qxx )]

where qx , the wave vector of periodicity along x, depends
The X Mode occurs only when RE>1. Increase of E1on material parameters, ® eld strengths and sample thick-
implies an increased width of the region of existenceness. Substituting in equations (3) ± (4 ) and using equa-
of HD.tion (9), q is found to be p/2. The compatibility of (3)

While HD involves only a splay deformation, X Modeand (4) for non-vanishing perturbation amplitudes leads
is associated with both splay and bend. This actuallyto an expression for H) as a function of the wave vector:
increases the elastic free energy of X Mode relative to
that of HD [note the term K3h

2
,x in equation (2)] causing

vH (Qx ) =
d1Q

4
x+d2Q

2
x+d3

b1 Q
2
x+

p
2

4

; Qx=qxh ;
an additional stabilizing torque K3h,xx in equation (4).
However, E for the X Mode contains two perturbations,
E ¾x=Õ y ,x and E ¾z=Õ y,z both of which vary periodic-
ally with x. Of these, E ¾z (destabilizing component) is invH =

xA H
2
)h

2

K1
; b1=

e
d

e)
; b3=

K3

K1
; d1=b1b3 ;

phase with h along x while E ¾x (stabilizing component)
is out of phase. In addition, E ¾z is symmetric ( like h )

while E ¾x is antisymmetric. Hence, the destabilizing e� ectd2=vE+
p

2

4
( b1+b3 ) ; d3=

p
2

4 AvE+
p

2

4 B . (12)
of E ¾z is felt more strongly than the stabilizing in¯ uence
of E ¾X . Once the additional stabilizing in¯ uence of bendClearly, when Qx � 0, H)(Qx ) reduces to HF (11). Also,
is overcome [note K3 in the numerator of equationH)(Qx ) depends on Q

2
x showing that the sign of Qx is

(14)], the X Mode sets in; as the torque due to E ¾ isunimportant. Suppose Exo is high enough. Due to the
eA Exoy ,z in equation (4), this happens when Exo isnet destabilizing action of E ¾ , H)(Qx ) diminishes when
su� ciently strong. The higher the eA , the stronger is thisQx is increased from zero, reaching a minimum HPX=
torque due to E ¾ . Hence, eA appears in the denominatorH)(QPX ) when Qx=QPX . Further increase of qx causes
of equation (14). To understand this more formally, E1 isan increase in H)(Qx ) ; hence, HPX and QPX can be
di� erentiated with respect to one of the variables, keep-regarded as the X magnetic threshold and (dimen-
ing the others ® xed. Then, qE1 /qea , qE1 /qe

d
<0 andsionless) wave vector at threshold, respectively. From

qE1 /qK3 , qE1 /qe)>0 all of which supports the aboveequation (12),
qualitative arguments.

With the parameters (10), rX and QPX are studied asQ
2
PX=

p
2

4b1
(D Õ 1 ); D

2=1 +
16b1

d1p
4 Ab1d3 Õ

d2p
2

4 B ;
functions of RE [curves 2 in ® gures 1 (a) and 1 (b)] with
a sample thickness 2h =500 mm. The study of reduced
quantities makes the results independent of sample thick-H

2
PX=A 2d1Q

2
PX+

d2

b1B K1

xA h
2 . (13)

ness. When RE assumes high values, rX tends asympto-
tically to a lower limit. From equations (11)± (13),It is convenient to de® ne a reduced X threshold in terms
rX# (e)/e

d
)1/2 when RE&1; in the same limit,of HF from equation (11):

QPX# (p2
RE /4b1 )

1/2. Interestingly, this limit is independ-
ent of the elastic constants. For su� ciently low RE , therX=

HPX

HF
.

wavelength of periodicity ~2h. Relevant quantities for
SOLUTION 2 can be calculated by substituting 2p forWhen rX<1, the X Mode is more favourable than HD.
p in equations (11) and (12). Results are not presentedClearly, as Exo increases, QPX increases and rX diminishes.
for SOLUTION 2 as it has higher threshold thanWhen Exo is su� ciently low, QPX vanishes. In this limit,
SOLUTION 1 and is, therefore, of no interest. This isthe X and HD thresholds become equal leading to the
because an antisymmetric h is the next higher harmoniccritical electric ® eld E1 ,
to the symmetric h and hence the elastic deformation
energy of SOLUTION 2 is higher than that of

E
2
1=

p
3
K3e

2
)

h
2
e
d
e

2
A

. (14)
SOLUTION 1.
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182 U. D. Kini

de® nite spatial symmetries because H) acts along z

which is a symmetry direction.
Clearly, SOLUTION 1 involves lower deformation

energy than SOLUTION 2. The net destabilization
in¯ uence due to E ¾ is also stronger for SOLUTION 1.
Once y dependence is separated out of equations (3)± (5 ),
three coupled ordinary di� erential equations result, each
of second order. These are solved by the series solution
method with boundary conditions (9) to yield a compat-
ibility condition from which one obtains the neutral
stability curve H)(Qy ) where Qy=qy h. The minimum
HPY=H)(QPY ) occurring at Qy=QPY is taken as the
Y threshold; the reduced magnetic Y threshold is de® ned
in terms of HF of equation (11) as rY=HPY /HF .

Computation for equation (10) shows that rY< rX for
all RE [® gures 1 (a) and 1 (b) ; curves 1] with the critical
point for Y Mode also lying below that of X Mode
(RE=1 ). The reason for this is obvious from equations
(3)± (5 ). In comparison with HD, the additional elastic
deformation in the X Mode is the bend while the

Figure 1. Plots of rX , rY , QPX , QPY as functions of RE under corresponding distortion in the Y Mode is the twistrigid anchoring hypothesis (see § 3.1 and § 3.2 for de® ni-
[K2h ,yy in equation (4)]. The decrease in free energytions). The material chosen is 5CB with parameters (10).
caused by this is partially o� set by the antisymmetricityThe planar orientation is stabilized by E0 along x and

destabilized by H) applied in the yz plane making angle of w which introduces additional splay and twist contri-
a radian with y axis. rX and rY are the reduced magnetic butions [K1w ,yy and K2w ,zz in equation (5)]. The X Mode
thresholds for the X and Y Modes, respectively. QPX and has only one destabilizing contribution from y ,z in
QPY are the reduced wave vector amplitudes for the two

equation (4); the Y Mode bene® ts from this and alsoModes. Curves 1 and 2 represent, respectively, the Y and
from the additional destabilizing torque ~y,y in equa-the X Modes; a dashed curve denotes a region of no real

interest. Diagrams are drawn for a = (a, b)p/2, (c, d ) 0´8 rad. tion (5). This may account for the Y Mode being more
In (a, b), both Modes conform to the symmetries of favourable than the X Mode. The Y Mode is associated
SOLUTION 1. In (c, d ), the X Mode possesses the sym- with antisymmetric w, but w does not appear in HD. Nometry of SOLUTION A and exhibits a critical point with

direct coupling exists between w and H) in the presentHD; the Y Mode is a mixture of SOLUTIONs 1 and 2
case. The existence of the critical point between theand hence does not possess a critical point in the low RE

region. The crossover from Y Mode to X Mode is evident Y Mode and HD is an indication that the amplitude of
in (c, d ) . Curve 1 in (c) has not been exhibited fully where w depends on QPY so that w disappears when QPY � 0.
rY>1. Curves 3 in (a, b) represent the Y Mode for a In a nematic with K1>3´4K2 , the Y Mode resultshypothetical material with K1=4K2 . The critical point

instead of HD when H) acts along z even in the absencebetween HD and Y Mode disappears in this case as the
of Eo [6, 8] (see also § 5). For parameters (10), however,Y Mode exists even when Exo=0 (see also § 5.2).
the Y Mode cannot set in unless Eo is impressed; only
HD exists. The Y Mode develops in 5CB (10) when the
lack of elastic anisotropy is compensated by the destabil-Calculations for the Y Mode proceed similarly except

that now all three variables enter the picture. While h izing contribution arising from E ¾ [® gures 1 (a) and
1 (b)] . A critical point (#0 8́RE ) exists between theand y are in phase along y [say, with a variation of

sin (qyy)], w is out of phase [with the dependence Y Mode and HD owing mainly to the de® ciency in
elastic anisotropy of equation (10). It is, therefore,cos (qy y)]. The two uncoupled solutions are referred to

as before as h and y have the same symmetry as possible that a material with parameters (10) but a high
enough elastic anisotropy will not have a critical point;the X Mode:
in such a case, the Y Mode would develop for any REY Mode SOLUTION 1: h is symmetric; y and w are
and HD would never set in. This conjecture proves true

antisymmetric.
for a hypothetical material with parameters (10) except

Y Mode SOLUTION 2: h is antisymmetric; y and w
that K1=4K2 [curves 3 in ® gures 1 (a) and 1 (b)]. With

are symmetric.
increase of RE , the stripe width and rY decrease due to
the enhanced destabilizing torque resulting from E ¾ [seeEven though the Y Mode has periodicity along y (normal

to the initial alignment ), the perturbations conform to terms ~Exo y ,z and Exoy ,y in equations (4) and (5)].
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183Periodic deformations in planar oriented nematics

Presently, we shall contrast this behaviour with that diminished from p/2. At su� ciently low a, both PD
Modes should be quenched. If the rate of increase ofexhibited by a similar material in a di� erent geometry
threshold for a variation is di� erent for the X and Y(§ 5.2 ).
Modes, a crossover might even occur from the Y toThe XY Mode can also be studied. The x, y variation
the X Mode.is sin Q /h (Cmx +Smy) for h and y and cos Q /h (Cmx +Smy)

For the X Mode, equations (3)± (5 ) support twofor w ; m is the angle between the dimensionless wave
decoupled solutions:vector of magnitude Q and the x axis. With this ansatz ,

equations (3)± (5 ) reduce to a set of ordinary di� erential X Mode SOLUTION A: h and w are even; y is odd.
equations which support the same modal structure as X Mode SOLUTION B: h and w are odd; y is even.
for the Y Mode. The solution e� ected with the series

The X Mode perturbations exhibit de® nite spatial sym-method yields a neutral stability surface H)(Q , m) . For
metry as the direction of periodicity (x ) is along the

m=0, the neutral stability surface degenerates into the
optic axis and H) acts in a plane normal to x. Compared

neutral stability curve for the X Mode whose minimum
with the case a =p/2, the X Mode is associated with the

yields the X threshold. Similarly, the Y threshold results additional perturbation w whose presence only adds to
at m=p/2. Calculation shows that when RE is su� ciently the elastic free energy without introducing additional
high, the absolute minimum of the neutral stability destabilizing torques via modi® cation of E. Thus, w only
surface lies at m=p/2, corresponding to the Y threshold; adds stabilizing torques whose magnitude increases as a
no other minimum can be found at other m values. Thus, is diminished from p/2. Hence, the X Mode gets sup-
the XY Mode degenerates into the Y Mode. This is to pressed in favour of HD when H) is rotated away from z.
be expected because the free energy density for the Clearly, SOLUTION A has the same symmetry as
XY Mode results from that of the Y Mode by the HD and can be regarded as an extension of HD. As all
addition of two purely positive terms, K3h

2
,x and three perturbations are in phase along x, the ansatz

K3w
2
,x . These correspond to purely stabilizing elastic

torques, K3h ,xx and K3w,xx . Naturally, no point on the (h, w, y)=ChM cosApz

2hB , wM cosA pz

2hB , yM sin A pz

2hBDneutral stability surface can dip below the Y threshold.
Hence, the XY Mode is not studied.

Ö sin
Qx x

h
3.2. Results for rigid anchoring with a Þ p/2

satis® es equation (9) as well as symmetry requirements.Now H) is tilted away from z in the yz plane at
Substitution in equations (3)± (5 ) leads to a compatibilitydi� erent a. With dependence on z (HD), all three per-
condition and the neutral stability curve, H)(Qx ) :turbations are coupled. Equations (3)± (5 ) yield a pair

of coupled ordinary di� erential equations in h and w. xA h
2
H

2
)

K1
=

c1Q
6
x + c2Q

4
x+ c3 Q

2
x+ c4

c5 Q
4
x+ c6 Q

2
x+ c7

;For symmetric h and w, the z dependence ~cos (pz/2h )

leads to the HD threshold,

b2=
K3

K2
; c1=b1b2b3 ;

H
2
F (a) =

(K1e)p
3+eA e

d
h

2
E

2
xo ) (K2p

3+eAh
2
E

2
xo )

4pxA h
2[e)p

3
(K1C

2

a+K2 S
2

a
)

+eA h
2
E

2
xo (e

d
C

2

a+e)S
2

a
)] c2=

p
2

4
[b3b2+b1 ( b2+b3 )]+2b2vE ;

(15)

which is a function of a. When a=p/2, equation (15) c3=
p

4

16
( b1+b2+b3 ) +VEvE

reduces to (11) with w decoupling from h and y . If H)
acts along y, h and y damp out and (15) yields

+
p

2

4
[vE+VE ( b1+b3+b1b3 )] ;

xA h
2
H

2
F (a=0 )

K2
=

p
2

4
+VE ; VE=

eAh
2
E

2
xo

4pK2
(16)

c4=
p

2

4 Ap
2

4
+vEB Ap

2

4
+VEB ; c5=b1b2 ;

which is obtained from (5) alone. The absence of the
ratio e

d
/e) shows the non-existence of electric modula-

tions for a twist HD, leading to the following conclusion. c6=VEb1+
p

2

4 Cb2+b1 AC
2

a
b2

b3
+S

2

aBD ;

As the tilt of H) is varied away from z towards y, the
coupling between y and the director deformations dimin-

c7=
p

2

4 Cp
2

4 AC
2

a
b2

b3
+S

2

aB+VE (S
2

a
+C

2

a
b1 )D .ishes. As both PD Modes at a =p/2 arise from the

destabilizing in¯ uence of y , the X and Y thresholds
should increase relative to the HD threshold when a is (17)
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184 U. D. Kini

At a given a and su� ciently high RE , the X threshold marked deviations occur in the variation of threshold
parameters. The RE variation at a =0 8́ rad bears thisHPX is the minimum of (17) occurring at Qx=QPX . The

reduced threshold rX=HPX /HF is de® ned using HF of out [® gures 1 (c) and 1 (d )]. The Y Mode is more
favourable that the X Mode at high RE . When RE is(15). As the X Mode is an extension of HD, a critical

point can be expected between the X Mode and HD diminished, a crossover occurs between the two Modes
with the X Mode becoming more favourable than thewhere QPX � 0.

The case of Y Mode is not so simple. When H) acts Y Mode. This should be accompanied by a discontinuous
change in the wave vector of periodicity (change inat some arbitrary a in the yz plane, its direction is not

symmetric relative to the direction of periodicity ( y) . As direction by p/2 rad and a decrease in the stripe width).
At this a, the X Mode critical point is higher thanseen from equations (4) and (5), magnetic cross coupling

terms involving xA H
2
)S

a
C

a
arise connecting w and w ,z RE=1. In this region, the Y Mode is of academic interest

as the Y threshold cannot meet the HD thresholdas well as h and h ,z . A closed form solution cannot be
obtained with each perturbation possessing a unique continuously and rY>1.

The variation of a at ® xed RE ( ® gure 2) complementsspatial symmetry as in SOLUTION 1 or SOLUTION 2.
Each perturbation becomes the sum of two terms as in the conclusions of ® gure 1. The Y Mode is more favour-

able than the X Mode when a is close to p/2. When a

is decreased, a crossover occurs from the Y to the
h=hU cos

Qy y

h
+hT sin

Qyy

h X Mode accompanied by discontinuous change in the
wave vector. In this region again, rY>1. When a is low

where hU , hT , etc. are functions of z. Substitution in enough, even the X Mode disappears below a critical
equations (3)± (5 ) yields six coupled ordinary di� erential point and HD alone exists. When RE is diminished, the
equations in hU , wT , etc. From (9), six boundary condi- a ranges of existence of both PD Modes shrink
tions also result. If hT , wT and yU are even, then hU , wU [® gures 2 (c) and 2 (d )]. Then, HD appears over a wider
and yT are odd. Thus, each perturbation is a linear a range starting from a=0. The Y threshold exceeds the
superposition of two terms of which one conforms to X threshold with decrease of a because of the larger
the symmetry of SOLUTION 1 and the other to
the symmetry of SOLUTION 2. The presence of
SOLUTION 2 elevates the elastic deformation energy
and diminishes the destabilizing contribution from E ¾ .
The proportion of SOLUTION 2 increases as a is
diminished from p/2. Hence, the Y Mode becomes
unfavourable at su� ciently low a.

At suitable a and RE , the series solution method is
applied to equations (3)± (6 ) and (9) and the Y threshold
numerically calculated as the minimum HPY=H)(QPY )
of the neutral stability curve H)(Qy ) . The reduced mag-
netic threshold rY=HPY /HF is de® ned using HF of (15).
As the Y Mode perturbations have no unique spatial
symmetry at general a, the Y Mode and HD are not
separated by a critical point where QPY vanishes. In
general, QPY is non-zero when rY attains unity so that
the transition from Y Mode to HD occurring at low RE

is one of the ® rst order, assuming QPY to be the order
parameter.

The results for both Modes reduce to those of
® gures 1 (a) and 1 (b) (curves 1 and 2) when a is close to
p/2; the Y Mode is more favourable than the X Mode Figure 2. Variation of rX , rY , QPX , QPY with a for 5CB
over the entire RE range except that HD prevails when parameters (10) at RE= (a, b) 12 5́, (c, d ) 8 (see § 3.2 and
RE is very small. This is to be expected as the proportion ® gure 1 for details). The X Mode (curve 2) conforms to

SOLUTION A (and exhibits a critical point with HD);of SOLUTION 2 is minimal when a is close to p/2 so
and Y Mode (curve 1) does not exhibit a critical pointthat the perturbations have almost the spatial symmetry
as it is a mixture of SOLUTIONs 1 and 2 (§ 3.1 ). The

of SOLUTION 1. The discontinuity of the transition crossover from Y Mode to X Mode occurs when H) is
between the Y Mode and HD is also imperceptible. rotated from z towards y. The a range of existence of both

PD Modes shrink when RE is decreased.When a is higher (H) rotated away from the z axis),
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185Periodic deformations in planar oriented nematics

proportion of the unfavourable SOLUTION 2 getting agreement with the conclusions of ® gures 1 and 2. The
following points are apparent.mixed with SOLUTION 1.

The XY Mode solution is analogous to that of the
(i ) HD sets in at low a (when H) is rotated close to

Y Mode. The XY Mode perturbations also do not
the y axis) as well as at low RE ; this region is

possess pure spatial symmetry. Closed form solutions
marked HD.

are in the form
(ii) In the region marked X, only the X Mode exists

with threshold lower than that of HD.
w=wU cosCQ (Cmx +Smy)

h D+wT sinCQ (Cmx +Smy)

h D ( iii ) The region marked with X and Y is one where
both X and Y Modes can exist as solutions with

where wU , hT , yT belong to SOLUTION 1 and wT , hU , thresholds lower than the HD threshold. Here,
yU belong to SOLUTION 2. The compatibility condi- an explicit calculation of rY and rX will reveal
tion obtained from equations (3)± (5 ) and (9) using the which of the two Modes has the lower threshold
series solution method enables de® nition of the neutral and is, therefore, the more favourable one.
stability surface H)(Q , m) at given RE and a. H)(Q , m) (iv) The Y Mode alone prevails in a small triangular
does not exhibit an absolute minimum at arbitrary m. region near a =p/2.
When RE and a are su� ciently high the XY threshold

Figure 3 (b) shows the phase diagrams for a hypotheticaloccurs at m# p/2 corresponding to the Y threshold itself.
material having parameters (10) but with K1=4K2 .At low a, the XY threshold degenerates into the X
This diagram is similar to ® gure 3 (a) except that thethreshold occurring at m #0. Hence, the XY Mode is
Y Mode occurs even at Exo=0 when H) acts close tonot studied.
the z axis. Clearly this is by virtue of the elastic aniso-Figures 1 and 2 indicate the shape of the phase
tropy of the material (the Y region near the right-sideboundaries between the di� erent deformations in the
bottom is now enlarged and extends right down toRE ± a plane. For the Y Mode, the phase boundary is
RE=0).obtained by initially ® xing RE at a high value. Starting

with a close to p/2, rY and QPY are determined. Now a
4. Material with positive eA and xA ; weak anchoringis diminished in small steps and the above calculation
The boundary conditions (7) ± (8 ) are now employed.performed for each a. At some a =aY , rY=1. If a is

In general, both h and w may occur; hence, bothdecreased further, rY exceeds unity. Generally, QPY is
anchoring strengths may a� ect the onset of distortion.non-zero at this point. The value of RE is decremented
For simplicity, we assume, in § 2, that the polar (orand the above procedure repeated. A plot of RE versus
azimuthal ) anchoring strength at either boundary isaY yields the phase boundary separating the Y Mode
equal. As the anchoring energy is ® nite, the bulk elasticand HD. A similar calculation yields the phase boundary
torque induces a deformation at the boundaries which,for the X Mode except that when a � aX , QPX � 0.
in turn, a� ects the nature of restrictions placed on y , asFigure 3 (a) contains the phase boundaries of the X
y ,z will also not vanish at the boundaries. It is also notand Y Modes for 5CB parameters and is in qualitative
straightforward to scale results to make them independ-
ent of the sample thickness; hence, the sample thickness
becomes a parameter in the problem. The boundary
conditions for di� erent deformations are di� erent; even
in the most general case, K24 will not a� ect either HD
or the X Mode. Boundary conditions for the Y and XY
Modes, on the other hand, contain K24 . As the wave-
length of periodicity ~2h, the in¯ uence of K24 becomes
important if Bh ~K24 . As K24 ~10 Õ

7 dyne, h ~10 Õ
5 cm

for K24 to be e� ective if the relevant anchoring strength
B ~10 Õ

2 erg cm Õ
2. Such a sample thickness is available

in the sub-micron cavities in PDLC ® lms. In thicker
samples, the e� ect of K24 is less signi® cant. If, on theFigure 3. (a) Phase boundaries of the X (curve 2) and Y

(curve 1) Modes in the RE± a plane for 5CB parameters other hand, the anchoring is still weaker, e� ects of K24
( 10) with rigid anchoring. The X Mode is SOLUTION A may be seen even in thick samples.
while the Y Mode is a superposition of SOLUTIONs 1
and 2 for general a. (b) Phase boundaries for a hypothetical

4.1. Results for weak anchoring with a =p/2material with K1= 4K2 . The Y Mode exists even in the
With H) acting along z, the results are especiallyabsence of Eo due to the high elastic anisotropy (see § 3.2

and ® gure 1 for details). simple in some cases. For HD, w damps out leaving h
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186 U. D. Kini

coupled to y ; only B
h

is now relevant. From equations computed and EA calculated subsequently. For uniform-
ity, RE is calculated as before in terms of E1 , equation(3), (4 ) and (7), the HD threshold is found:
(14).

For the Y Mode, the equations for equilibrium in theH
2
F=

K1

xAh
2 (q

2
C+vE ) ;

bulk (3) ± (5 ) are the same as those for rigid anchoring,
but the boundary conditions (7) and (8) are di� erent.

s
h
cos qC Õ qC sin qC=0; s h =

B
h
h

K1
. (18) Out of the two uncoupled solutions, SOLUTION 1 is

selected. The Y threshold is determined numerically
For a given B

h
and other parameters, qC is numerically using the series solution method and depends on K24 ,

determined by iteration; then HF is computed. When s
h

and
s
h
&1, qC# p/2 and (18) reduces to (11). In general, qC

(or equivalently HF ) diminishes when s h is decreased. s
w
=

B
w
h

K2
.

The structure of the X Mode remains the same as
that for rigid anchoring. Again, w does not appear; h and The dimensionless Y threshold, rY , is also calculated in
y are in phase along x and possess the symmetries of terms of HF (18). The di� erence in the boundary condi-
SOLUTION 1 or SOLUTION 2. Proceeding as in § 3.1, tions of HD and the Y Mode arises from the terms
the neutral stability curve for the X Mode is determined ~(K1 Õ K24 )w ,y and ~(K24 Õ K2 )h ,y in (7). This di� er-
from ence should disappear in the limit of vanishing wave

vector qy . The other di� erence is the appearance of w ins
h
(q

2
1+q

2
2 ) cos q1 Õ q1 ( b1Q

2
x+q

2
1 ) sin q1

the Y Mode but not in HD. If the amplitude of the
+q2 (q

2
2 Õ b1 Q

2
x ) (cos q1 ) tanh q2=0; Y Mode w is proportional to some power of qy , then w

will vanish with the wave vector; in other words, a
q

2
1=

(P
2
1+4P2 )

1/2+P1

2
; q

2
2=

(P
2
1+4P2 )

1/2 Õ P1

2
; critical point will exist between HD and the Y Mode.

The variations of rX and rY with RE are similar
P1=vH Õ vE Õ Q

2
x ( b1+b3 ) ; to those of ® gures 1 (a) and 1 (b) (curves 1 and 2) for a

thick sample (h =250 mm) and strong anchoringP2=Q
2
x [b1 (vH Õ b3 Q

2
x ) Õ vE] . (19)

(B
h
, B

w
~10 Õ

2 dyne cm Õ
1 ) . The Y Mode is uniformly

The X threshold is a� ected only by B
h
, the polar more favourable than the X Mode, hence the X threshold

anchoring strength, and is independent of B
w
, the azi- is not depicted. Weakening of anchoring strength by

muthal anchoring strength. For strong polar anchoring, four orders of magnitude or changing the value of K24
(s

h
&1 ), equation (19) reduces to cos q1#0 or q1#p/2 from zero to 2K2 has little e� ect on the results. The

leading to equation (12) for rigid anchoring. Hence, e� ect of weak anchoring becomes apparent only in a
results of X Mode from (19) should reduce to those of thin sample with h =2 5́ mm. A detailed calculation
(12) when the anchoring is strong. The reduced X involves not only choosing di� erent sets of values for
threshold is calculated in terms of HF (18). The X Mode the two anchoring strengths but also for K24 . To reduce
and HD need to be compared. The perturbations of the bulk of presentation, the Y threshold parameters are
both deformations possess identical spatial symmetry plotted ( ® gure 4) against RE for three extreme sets of
for z dependence; they also obey identical boundary anchoring strengths:
conditions. But for the X Mode condition (8) has to be

(a, b) strong polar anchoring, weak azimuthalseparately imposed while for HD it is identically satis® ed
anchoring;once (3) is integrated. Because of this reason even if a

(c, d ) weak polar anchoring, strong azimuthal® eld, say Exo =EA , exists where QPX � 0, rX may exceed
anchoring;unity in this limit. Thus, EA cannot be a true critical

(e, f ) weak polar and azimuthal anchoring.point separating HD and the X Mode. When equation
(19) is expanded in powers of Qx and (18) used, (19) Two extreme values are chosen for K24 Ð zero and 2K2 .
takes the form N1 Q

2
x=0 to lowest order in Qx where N1 The case of strong polar and azimuthal anchoring is left

is a function of material parameters, anchoring strength out as the results are similar to those of ® gures 1 (a) and
and Exo . Equating N1 to zero and solving for Exo , one 1 (b) (curve 1) and the in¯ uence of K24 is hardly signi® c-
gets ant. Regardless of the anchoring strengths, enhancement

of K24 has a salutory e� ect on the formation of the
E

2
A=

q
2
C

q
2
C+s

2

hAb3

b1
(s

2

h
+s

h
+q

2
C) Õ s

hB4pK1e)
e

2
A h

2 . (20) Y Mode; in general, the Y threshold decreases at a given
RE , the stripes become narrower (wave vector increases)
and the RE range of existence of the Y Mode widensWhen s

h
&1, EA# E1 of (14). When s

h
is diminished

(the polar anchoring is weakened ), qC has to be ® rst with respect to that of HD. This is clearly because of

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
2
0
:
0
6
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



187Periodic deformations in planar oriented nematics

Figure 4. Plots of rY versus RE when director anchoring energy is ® nite and the sample thin (h =2 5́ mm). H) acts along z so that
the Y Mode perturbations conform to de® nite spatial symmetry. rX (the reduced magnetic threshold of the X Mode) is omitted
as it is higher than rY for all RE . Parameters used are from (10) for 5CB with (B

h
, B

w
)= (a, b) (10 Õ

2, 10 Õ
6 ), (c, d ) (10 Õ

6, 10 Õ
2 ),

(e, f ) ( 10 Õ
6, 10 Õ

6 ) erg cm Õ
2. The curves are drawn for K24= ( 1 ) zero (2 ) 2K2 (see § 4.1).

the opposing role of the K24 surface torque (7) with a (su� ciently removed from p/2), the Y Mode is more
favourable than the X Mode at high RE while the reverserespect to those corresponding to K1 and K2 . Obviously,

the e� ect of K24 is most pronounced when both holds when RE is decreased to low values.
A detailed exposition of the e� ects of anchoringanchoring strengths are weak [® gures 4 (e) and 4 ( f )]

with the Y Mode appearing to form even in the absence strengths is cumbersome. The in¯ uence of the anchoring
strengths on the ranges of existence of the X and Yof RE ; this result is in qualitative agreement with the

® ndings of [28]. A diminution of B
w

widens the range Modes can be appreciated by choosing the three extreme
cases of § 4.1 even for a thick sample ( ® gure 5 ) when H)of existence of the Y Mode Ð compare ® gures 4 (a) and

4 (b) with 4 (c) and 4 (d ) . A reason for this is that acts roughly midway between the z and y axes. The
nature of variation of threshold parameters is similar todevelopment of the twist, w, is central to the formation

of the Y Mode. Decrease of B
w

makes it easier for w to that found in ® gures 1 (c) and 1 (d ) with the Y Mode
becoming unfavourable when RE<6. K24 has beenform through the action of electric perturbations Ð for

5CB (10), the elastic anisotropy is not high enough to equated to zero because its e� ect on the Y Mode is felt
only at low RE where the Y Mode is of only academicinduce Y Mode in the absence of E.
interest. The range of existence of the Y Mode widens
when B

w
is diminished [compare ® gures 5 (c) and 5 (d )4.2. Results for weak anchoring with a Þ p/2

As in § 3.2, the governing equations for the X Mode with 5 (a) and 5 (b)] ; diminution of B
h

does not have
much e� ect [compare ® gures 5 (c) and 5 (d ) with 5 (e)support two uncoupled solutions of which we choose

SOLUTION A. The Y Mode is a mixture of and 5 ( f )]. The Y Mode exhibits a strong discontinuity
of threshold with HD in the low RE region with theSOLUTIONs 1 and 2 superposed out of phase along y.

The full set of boundary conditions (7)± (8 ) is employed. wave vector remaining non-zero when rY=1.

As the X Mode survives in the low RE region, oneAs the X Mode now involves w, its threshold is in¯ uenced
by both anchoring strengths (unlike the situation in can compare the diagrams to ® nd out how changes in

anchoring strengths a� ect this Mode. In general, QPX � 0§ 4.1 ). The thresholds are computed by the series solution
method. When both anchorings are strong (say, when rX � 1. The range of existence of the X Mode

widens when the polar anchoring is weakened [® guresB
h
, B

w
~10 Õ

2 erg cm Õ
2 ), the results become almost

identical to those of ® gures 1 (c) , 1 (d ) and 2. At a given 5 (a ± d )]. Weakening of the polar anchoring makes it
easier for the h deformation to set in. As h is the principalRE , the Y Mode is more favourable when a is close to

p/2; the X threshold dips below that of the Y Mode deformation of the X mode which causes destabilizing
electric perturbations, a factor aiding the formation of hwhen H) is rotated su� ciently away from z. At a given
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188 U. D. Kini

Figure 5. Variations of rX , rY , QPX and QPY versus RE for weak anchoring; parameters as in expression (10) and h =250 mm.
H) acts in the yz plane making angle a =0 8́ rad with the z axis (see ® gure 1 for details). Curves 1 and 2 represent, respectively,
the Y and X Modes. Curve 1 has not been fully shown in the low RE limit in (a, c, e) where rY exceeds unity. Diagrams are
drawn for (B

h
, B

w
)= (a, b) (10 Õ

6, 10 Õ
2 ), (c, d ) (10 Õ

2, 10 Õ
6 ), (e, f ) ( 10 Õ

6, 10 Õ
6 ) erg cm Õ

2. K24 is assumed to be zero (see § 4.2 ).

should widen the range of existence of the X Mode.
From ® gures 5 (a) , 5 (b) , 5 (e) and 5 ( f ) the critical point
of the X Mode is found to move to slightly higher RE

when the azimuthal anchoring is weakened. In the
X Mode, w does not perturb the electric ® eld; it only
brings in additional elastic energy without generating
other destabilizing torques. A factor in¯ uencing the
development of w cannot, therefore, lower the X
threshold or widen the range of existence of the X Mode.

Figures 4 and 5 show that the phase boundaries of
the X and Y Modes have the shapes found in ® gure 3 (a)

even for weak anchoring. The e� ect of diminishing the
anchoring strengths is strong when RE is low and the
sample su� ciently thin. The presence of K24 may domin-
ate when H) acts close to z [® gures 4 (e) and 4 ( f )]. The
phase boundaries are determined in a thin sample for a
few extreme sets of anchoring strengths ( ® gure 6). While
the wave vector of the X Mode tends to vanish on
curve 2, the Y Mode wave vector generally remains non-
zero on curve 1. For strong anchoring, the phase diagram
closely resembles ® gure 3 (a) , hence this case is left out.
Diminution of polar anchoring strength tends to push
the X phase boundary to lower a [compare ® gures 6 (a)

and 6 (b)] . The e� ect of K24 in promoting the Y Mode Figure 6. Phase boundaries for the Y (curve 1) and X (curve 2)
Modes for a thin sample (h =2 5́ mm) when anchor-in the low RE range close to a =p/2 can be appreciated
ing energy is ® nite (compare with ® gure 3 ). Parametersfrom ® gures 6 (c) and 6 (d ) .
(10) for 5CB are employed. K24 is zero except in (d )

where K24=1 5́K2 . The anchoring strengths take the4.3. Flexoelectricity with weak anchoring; qualitative values (B
h
, B

w
)= (a) ( 10 Õ

2, 10 Õ
6 ), (b) ( 10 Õ

6, 10 Õ
2 ), (c, d )

discussion ( 10 Õ
6, 10 Õ

6 ) erg cm Õ
2. Comparisons of (c) and (d ) shows

When ¯ exoelectricity is included, terms (e1+ e3 )y ,xz that K24 can extend the domain of existence of the Y Mode
when RE is low (see § 4.2).and (e1+ e3 )y ,xy are added to the right-hand sides of U

h
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189Periodic deformations in planar oriented nematics

and U
w
, respectively, in equation (6); in addition, the tangential components of E should vanish at the bound-

aries² ; i.e. y ,x and y ,y should become zero at the plates.following changes are made in (2)± (8 ):
As we are interested in linear perturbations governed by
linear equations, the x and y dependence is imposed offF= e1 (w,y+h ,z )y ,x+ e3 (h,x y ,z+w ,xy ,y )

by the ansatz exp i (qxx +qy y) where qx and qy are
+Exo (e1+ e3 ) (h,x h+w ,xw) ;

independent of space variables. Then, the vanishing of
the tangential components of E is ensured if y vanishesAF=4p(e1+ e3 ) (w,xy+h ,xz ) ;

at the boundaries. Including the rigid anchoring
t
h
=Õ e1 Exo+ e1y ,x ; lD=4pe3h,x (21)

hypothesis, expression (9) is replaced by

h=0; w=0; y =0 at z =Ô h (22)where e1 and e3 are the ¯ exoelectric coe� cients.
Flexoelectricity has two important e� ects. At the level

for all varieties of deformations. In a formal analogy
of the bulk equilibrium equations (3)± (5 ), it prevents

with the weak anchoring conditions for the director
perturbations from having de® nite spatial symmetry

perturbations, we can regard the vanishing of y in (22)
even when the rigid anchoring hypothesis is assumed.

as the electric analogue of r̀igid anchoring’ on y ; sim-
As the ¯ exoelectric coe� cients are ~10 Õ

4 esu, this e� ect
ilarly, the condition of the vanishing y ,z in (9) for the

becomes prominent in a thick sample when Exo is low
other con® guration can be said to be f̀ree anchoring’

enough (see § 5 of [20]). Flexoelectricity also enters the
for y . Signi® cantly, y a� ects only the X and XY Modes

surface torque (7), (21) with one contribution being
and neither HD nor the Y Mode in this geometry.

proportional to Exo (see t
h
) . If the voltage is a.c. with

su� ciently high frequency, the term ~Exo in t
h

averages
5.1. H along symmetry directions; HD and X Modes

to zero. When the voltage is d.c. and the anchoring
First, the HD threshold is derived. Let H act along x

weak, the above contribution causes HD to develop
or z ; then w becomes decoupled and damps out. When

without threshold, however small the voltage Ð ana-
perturbations depend only on z, y is decoupled from h

logous to the e� ect discussed in [15]. For d.c. voltage,
and vanishes as per expression (22). In a nematic with

therefore, the analysis of § 2 to § 4 will not hold as the
eA , xA>0 (such as 5CB [18] or PBG [6]), H

d
stabilizes

ground state will not remain aligned along x.
no against the action of E resulting in the electric splay
threshold (Ezo=E1 ) de® ned by

5. PD under E applied normal to the plates
E

2
1=Ap

2

4
+

xA h
2
H

2

d
K1 B 4pK1

eA
h

2
. (23)The nematic is sandwiched between electrodes z =

Ô h to which a voltage Vz is applied. The sample is
In a nematic (such as M1 [22]) with xA>0 and eA<0,e� ectively in® nite along x and y. Rigid director
the magnetic splay threshold [H)=H1] is possible withanchoring is assumed so that quantities associated with
H) along z (a=p/2):surface energy are ignored; K24 will cease to matter.

Results can be scaled so as to be independent of sample
H

2
1=Ap

2

4
Õ

eA E
2
zoh

2

4pK1 B K1

xA h
2 . (24)thickness; hence some convenient value (say 100 mm) is

assigned to h. In the absence of distortion,
For the same orientation of H), the electric splay

Eo= ( 0, 0, Ezo ) ; Ezo=V z /2h. threshold in a nematic (such as CCH± 7 [23]) with eA>0

and xA<0 is Ezo=E2 with
Under deformation, n and E are again given by equation
(1). In equation (3), the ® rst term is replaced by eA Ezoh ,x . E

2
2=Ap

2

4
Õ

xA h
2
H

2
)

K1 B 4pK1

eA
h

2
. (25)

In (2), fE is rede® ned,

For the X Mode, h and y are out of phase along x ;

hence h and y ,x are in phase. While the z dependence offE=Õ
eAE

2
zoh

2

8p
+

eA Ezohy ,x

4p
;

in (5), U
w

vanishes and in (4),
² In a real situation, the electrodes may be covered with a

layer of surfactant for the purpose of aligning the director. If
U

h
=

eA E
2
zoh

4p
Õ

eA Ezoy ,x

4p
. the surfactant is also a conductor, then the boundary conditions

will remain (22). If the surfactant is a dielectric ( isotropic or
anisotropic), interesting possibilities are raised. The present
work does not address these complications.As E is normal to the surface of the conductor, the
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190 U. D. Kini

h brings in splay deformation, its x dependence intro- the governing equations take the form
duces bend. Unless this additional elastic torque is
compensated by a destabilizing in¯ uence, the X Mode w1,jj Õ Ap

2

4
r
2
N +k12Q

2
yB w1 Õ (k12 Õ 1 )Qyh1,j

=0;

cannot develop. The governing equations support two
solutions of which we select the one with h and y even,

h1,jj+A f Õ
Q

2
y

k12B h1+A 1 Õ
1

k12B Qyw1,j=0;corresponding to the ansatz

(26)
(h, y) =ChM sin AQxx

h B , yM cosAQxx

h B D cosA pz

2hB .

where h1 and w1 vanish at the boundaries and

Depending upon the material, either H) or Ezo is
rN=

H
d

H2
; H2=

p

2h AK2

xAB
1/2

; k12 =
K1

K2
;

expressed as a function of Qx using the compatibil-
ity condition arising out of the governing equations. It
can be analytically established that the X Mode thresh- f=

p
2

4
R

2
E+

xAh
2
H

2

d
K1

(R
2
E Õ 1 ); RE=

Ezo

E1
. (27)

old cannot exist in any of the three types of material
since the neutral stability curve rises continuously from The solution of (26) at a given k12 and weak H

d
results

the corresponding HD threshold without showing a in a neutral stability curve which expresses f as a
minimum when Qx increases from zero. function of Qy . The minimum fP occurring at Qy=QP

The physical reason for this is not far to seek. The corresponds to the electric Y Mode threshold EP=
torque on h arising from E ¾ is ~eA Ezo y ,x . In a material Ezo (QP ) . The reduced electric Y threshold RY=EP /E1
with eA>0, for instance, y ,x stabilizes the initial orienta- and threshold wave vector, QP , can be studied as
tion adding to the existing stabilizing in¯ uence (of H

d functions of k12 and H
d
.

in 5CB or of H) in CCH± 7); this ensures the continuous Figures 7 (a± c) contain results for the Y Mode. As
rise of the neutral stability curve for the X Mode from individual values of e

d
and e) are unimportant, a con-

the corresponding HD thresholdÐ equations (23) or venient value (say, 5) is assigned to eA ; similarly, xA=
(25). Even in a material such as M1 with eA<0, the 10 Õ

7 emu. When rN is low, RY decreases (and QP

destabilizing e� ect of y ,x cannot overcome the additional increases) with increasing k12 ; the higher the k12 , the
more favourable the Y Mode compared with HD.stabilizing torque corresponding to the bend deforma-
Su� cient increase of rN causes the Y Mode to becometion. In this section, therefore, we do not study the
quenched. At a given k12 , RY � 1 and QP � 0 whenX Mode.
rN � rNC so that for rN> rNC , only HD exists. Clearly,
rNC increases with k12 .

A qualitative explanation can be given for some of the5.2. Y Mode in a material with positive susceptibility
results. HD is associated only with h on which H

d
exertsanisotropies

a stabilizing in¯ uence. This causes the HD threshold,The Y Mode can form in nematics with high elastic
equation (23), to increase with H

d
. When H

d
is absentanisotropy [6, 8, 14]. As the Y Mode deformation does

and k12 is high enough, the Y Mode sets in with h and wnot perturb Eo , y becomes decoupled from h and w. As
instead of HD, because the Y Mode has lower total freethe X Mode cannot exist, the XY Mode also is of no
energy than HD. But H

d
has a stabilizing in¯ uence onconsequence; the XY threshold merely degenerates into

both h and w of which the existence of the latter is centralthe Y threshold with wave vector along y. Hence, only
to the formation of the Y Mode. When H

d
is strongthe Y Mode is studied.

enough, its stabilizing action on w makes the developmentThe well known results for materials with positive
of the Y Mode with non-zero wave vector impossible.susceptibility anisotropies [6, 8, 14] are summarized for

These results, shown in ® gures 7 (a) and 7 (b) , can be
comparison with results of § 3.1. We initially select H

d qualitatively compared with those of § 3.1, curves 3 in
which has a stabilizing in¯ uence on both h and w. The

® gures 1 (a) and 1 (b) . In both cases, the material has
Y Mode deformation conforms to either SOLUTION 1

positive susceptibility anisotropies. When Eo acts along
or SOLUTION 2 of § 3.1 (with y being ignored ); the

no , the magnetically induced Y Mode survives for all
Y threshold is determined as described in earlier sections.

Exo . This is because the Y Mode distortions perturb
With the ansantz the electric ® eld and E ¾ causes additional destabilizing

torques whose magnitude increases with Exo . In the
present case, the Y Mode deformations cause no(h, w)=Ch1 (j) cos

Qy y

h
, w1 (j) sin

Qy y

h D ; j=
z

h
,

perturbation of the electric ® eld; as indicated above,
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191Periodic deformations in planar oriented nematics

Solving (28) numerically, rNC is obtained as a function
of k12 [® gure 7 (c)]. Clearly, rNC increases with k12 .
Putting j =0 in (28) results in

k12 =kC ; kC=1 +
p

(p2 Õ 8)1/2 . (29)

This is the well known result [6, 8, 14] that the Y Mode
can occur only in a material with k12 >kC ; the limit kC

is the point of intersection of the phase boundary with
the k12 axis in ® gure 7 (c) . When k12&1 (very high elastic
anisotropy), the stabilizing H

d
required to quench the

Y Mode is also very strong; then, j&1 and tanh j #1.

In this limit, (28) reduces to rNC# k12 which yields the
almost straight segment of the phase boundary with unit
slope in the high k12 limit in ® gure 7 (c) .

5.3. Y Mode with eA>0 and xA<0; a =0
H) acts along y and has a stabilizing in¯ uence on w ;

H) does not directly couple with h. Hence, the Y Mode
should become quenched if H) is strong enough. The

Figure 7. (a ± c) Results for the Y Mode in high elastic aniso- governing equations can be cast into the form (26) with
tropy nematics with positive susceptibility anisotropies

the rede® nitions(see § 5.2 for de® nitions). The elastic ratio k12= K1 /K2 .
The Y Mode is induced in the planar oriented sample by
applying a voltage between the plates z =Ô h. Hd along rN= rD

=
H)
H2

; H2=
p

2h A Õ
K2

xAB1/2

;
x stabilizes the initial orientation. Rigid anchoring hypo-
thesis is employed. In (a) and (b) , curves are drawn for
k12= (1 ) 15, (2) 10, (3) 5. The reduced electric threshold

f=
p

2

4
R

2
e ; Re=

Ezo

ES
; E

2
S =

K1p
3

eA h
2 . (30)and dimensionless wave vector are plotted as functions of

the reduced stabilizing magnetic strength in (a) and (b) ,

respectively. (c) rN is the reduced stabilizing magnetic At given values of rD and k12 , the reduced Y threshold
strength, equation (28), necessary to quench the Y Mode is R e=R D at the wave vector QP . For purposes of
for a given k12 . The diagrams (b) and (c) also serve to

computation, xA=Õ 10 Õ
7 emu and eA=5. As the solu-represent results for a material having eA>0 and xA<0

tion of equation (26) determines the minimum fP of f aswith the stabilizing H) acting along y. Relevant quantities
a function of Qy at given rN and k12 , the QP versus rDare rede® ned as in § 5.3. The variation of R D , the reduced

electric Y threshold, versus the dimensionless stabilizing curves become identical to the QP versus rN curves of
magnetic strength, r D , is shown in ® gure 7 (d ) . § 5.2, ® gure 7 (b) . As the critical point is determined in

the limit of the vanishing wave vector, the phase bound-
the electrically induced Y Mode is suppressed by a ary between the Y Mode and HD will be again given
su� ciently strong H

d
. by ® gure 7 (c) with a suitable rede® nition. Using the

An estimate of rNC can be made using the approach approach of [30] this conjecture can be shown to be
of [30]. Brie¯ y, this involves solving the governing

true if we replace rN of equations (27) and (28) by rD of
equations of the Y Mode with boundary conditions (22).

(30). The only di� erence lies in the plots of R D versusSubstituting for h and w, the total free energy F is
rD , ® gure 7 (d ) . At a given k12 , corresponding curves inexpanded in powers of Qy ; up to lowest order, F=
® gures 7 (a) and 7 (d ) coincide only at the critical point

No+N1 Q
2
y . Using equation (23), No is found to vanish.

and at zero stabilizing magnetic ® eld. At other points,The critical point between the Y Mode and HD is found
R D <RY . This can be explained by comparing the valuesfrom N1=0 which reduces to
of fP (Y threshold) at a given k12 . From equations (30)
and (27),Cp

2

4
(k12 Õ 2 )k12 Õ j

2DA j
2+

p
2

4 B A tanh j

j B
R

2
D =R

2
Y+

xA h
2
H

2

d
K1

(R
2
Y Õ 1 )

4

p
2 ; xA>0.

Õ
(k12 Õ 1 )

2
p

2

2
=0;

Clearly, R D and RY coincide when H
d

vanishes and also
when RY equals unity. As RY < 1, R D < RY at general

j=
rNp

2
. (28)

values of the stabilizing magnetic ® eld.
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192 U. D. Kini

5.4. Y Mode with eA>0 and xA<0; a =p/2 a given k12 . Then, rP increases from ro tending asymptot-
ically to (but remaining less than) unity when Ezo attainsH) (acting along z) has a stabilizing in¯ uence on h

but no direct coupling with w. The electric splay thresh- high values. Again, qrP /qEzo>0 as ro is independent of
Ezo ; i.e. rP increases with Ezo .old is E2 , equation (25). Using the method of [30], the

Y Mode is found to occur only if k12>kC of (29). As
5.6. General orientations of H) in the yz plane; oppositein § 5.2, we solve (26) to calculate the Y threshold

susceptibility anisotropiesEP =Ezo(QP) except that now
In § 5.3± § 5.5, H) is assumed to act exactly along a

symmetry direction. Such a situation may not be realiz-f=AEzo

E2

p

2B 2

+
xA h

2
H

2
)

K1 A 1 Õ
E

2
zo

E
2
2 B .

able in an experiment. The results of § 3 and § 4 also
create interest in a study of the e� ects of an oblique H)The reduced Y threshold R2=EP /E2 . For a given on the Y Mode.

k12>kC , the wave vector QP does not vary with increas- In a material with xA<0 and eA>0, Eo along z
ing H). Hence, the Y Mode cannot be quenched by destabilizes and H) in the yz plane stabilizes no . As H)increasing the strength of the stabilizing H) impressed acts obliquely in the yz plane, h and w become coupled.
along z. When H)

=0, R2=Ro and Ro<1. When H) The initial task is to ® x the HD threshold. With depend-
is increased, R2 increases from Ro . When H) is very ence on z, the governing equations support two
strong, R2 asymptotically approaches (but stays below) uncoupled solutions; we choose the one with h and w
unity. This is clear from the discussion of § 5.3. At a symmetric. Using conditions (22), the a dependent
given k12 , the minimum fP occurring at wave vector QP electric HD threshold is given by
has a unique value. In the present case, the reduced
Y threshold has di� erent values for zero and non-zero

E
2
F=

p
3[K1K2p

2 Õ 4xA h
2
H

2
)(K1C

2

a+K2 S
2

a
)]

eAh
2
(K2p

2 Õ 4xAh
2
H

2
)C

2

a
)

.
H). Clearly,

(31)
R

2
o=R

2
2+

xA h
2
H

2
)

K1
(1 Õ R

2
2)

4

p
2 ; xA<0. When a =p/2, EF of (31) reduces to E2 of (25). In this

case, w damps out and h is in¯ uenced by Eo and H). In
As R2 < 1, Ro < R2 . Ro and R2 coincide in value when the opposite limit of a =0, w again damps out. As h now
the stabilizing H) is absent for any k12 >kC . Ro and R2 couples only to the destabilizing Eo along z, EF reduces
both attain unity at k12=kC regardless of the strength to the usual splay electric threshold ES of (30).
of H) acting along z. As Ro is independent of H), Similarly, in a material with xA>0 and eA<0, the
di� erentiation shows that qR2 /qH)>0 showing that R2 magnetic HD threshold under the stabilizing action of
increases with H). Eo is a dependent:

H
2
F=

K2p
2
(K1p

3 Õ eA h
2
E

2
zo)

4xA h
2[p

3
(K1C

2

a
+K2 S

2

a
) Õ eAh

2
E

2
zoC

2

a
]

. (32)5.5. Y Mode with eA<0 and xA>0; a =p/2
The magnetically induced Y Mode is studied exactly

as in § 5.4. Under the stabilizing action of Eo acting When a =p/2, w becomes decoupled and (32) reduces
along z, the HD threshold is H1 of equation (24). The to H1 of (24). When a=0, h damps out; w becomes
governing equations can be obtained from (26) by coupled to H) acting along y so that (32) reduces to
putting rN=0 and rede® ning the magnetic twist threshold.

The Y Mode threshold calculation is not straightfor-
ward. Due to the presence of the magnetic cross couplingf=

eA h
2
E

2
zo

4pK1 A 1 Õ
H

2
)

H
2
1B+

H
2
)

H
2
1

p
2

4
.

terms, h and w become linear superpositions of compon-
ents that are out of phase along y (§ 3.2 ); while one

Following [30], the critical point calculation shows
component conforms to SOLUTION 1, the other con-

again that the Y Mode is possible provided that k12>kC forms to SOLUTION 2 (§ 3.1 ). As HD has pure spatial
of (29). As before, the minimum fP of f occurring at a

symmetry, the Y Mode and HD cannot meet at a true
given Qy=QP depends only on k12 ; hence QP is independ-

critical point. When the Y and HD thresholds become
ent of Ezo . At a given Ezo , fP corresponds to the reduced

equal, QP may not be zero.
magnetic threshold rP=H)(QP)/H1 . If ro is the reduced
magnetic threshold at Ezo =0, 5.7. Y Mode in a material with eA>0 and xA<0; H) in

the yz plane
r
2
o =

eA h
2
E

2
zo

4pK1
(1 Õ r

2
P)

4

p
2+ r

2
P ; eA<0. As seen from § 5.3 and § 5.4, the actions of H) at the

two extremities of the a range are quite di� erent. When
H) of arbitrary strength is directed along z, it does notAs rP < 1, ro < rP . Suppose Ezo is increased from zero at
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193Periodic deformations in planar oriented nematics

a� ect the occurrence of the Y Mode. If H) acts along y, rC diminishes sharply when a is decreased even slightly
from p/2. This indicates the shape of the phase boundaryit can suppress the Y Mode at a critical point. In both

cases, the distortions have de® nite spatial symmetry. between the Y Mode and HD [® gures 8 (e) and 8 ( f )].

At a given a, rC is the value of rH at which RE equalsOnce a is changed to a general value, this symmetry no
longer holds. The changeover from Y Mode to HD unity; rC is plotted against a. The phase boundary has

the same shape for the chosen k12 values but the regionunder increase of H) should be discontinuous, in general.
Still, one can anticipate that when a is in the neighbour- of existence of the Y Mode expands with increase of k12 .

The phase diagrams in the range p/2 < a < p can behood of zero, the discontinuity should be less, as a
critical point exists at a=0. Similarly, the non-existence obtained by re¯ ecting ® gures 8 (e) and 8 ( f ) in the line

a =p/2. While rC tends to a ® nite limit at a=0, itof a critical point at a =p/2 implies that the suppression
of the Y Mode should becomes more discontinuous diverges when a ® p/2 in agreement with the results of

§ 5.3 and § 5.4. The valley in the mid-range is due to thewhen a is close to p/2. Hence, the e� ect of varying a (at
a given H)) and H) (at a given a) should prove presence of a larger portion of SOLUTION 2 in the

distortions; in this region the Y Mode is suppressed byinteresting. The reduced Y threshold is de® ned in terms
of EF , equation (31), as RE=Ezo /EF . The reduced even moderately strong stabilizing H).

Three distinct regions are discernible in ® gures 8 (e)stabilizing magnetic strength is de® ned in terms of the
twist magnetic threshold H2 of (30): rH=H)/H2 . For and 8 ( f ) . In illustration, consider ® gure 8 (e) . The line

rC=1 (weak stabilizing H)) does not cut the phasepurposes of computation, convenient values for some of
the parameters (say, h =0´01 cm, xA=Õ 10 Õ

7 emu and boundary; here, only the Y Mode exists. The line rC=9

(strong H)) cuts the phase boundary only close to a=eA=5) are used.
Figures 8 (a ± d ) contain plots of RE versus rH for p/2. Here, only HD exists over the entire region except

close to a =p/2 where the Y Mode prevails. The inter-di� erent a for one material (k12 ). At a given a, increase
of rH above some rC causes the Y Mode to disappear mediate line rC=4 has two intercepts. As a is increased

from zero, we have the Y Mode, then HD and again thewhen H) becomes su� ciently strong. But the discontinu-
ity of changeover from Y Mode to HD is much less Y Mode (though over a narrow a range). HD (the high

symmetry phase) occurs in a r̀e-entrant’ way when a iswhen H) acts closer to y [® gures 8 (c) and 8 (d ) ; the
transition appears to be almost continuous] than when increased from zero (or diminished from p/2).

The above conclusions are reinforced by ® gure 9H) is directed nearer to z [® gures 8 (a) and 8 (b)] ; in the
latter case, we take rC to be the value of rH at which which contains a variations of RE and QP . At a given,

moderate, rH , ® gures 9 (a) and 9 (b) , k12 plays an import-RE=1, though QP is non-zero. When a is small, rC

diminishes when a takes increasing values [® gures 8 (c) ant role in determining the range of existence of the
Y Mode. When k12 is high (curve 1), the Y Mode prevailsand 8 (d )]. In the opposite limit [® gures 8 (a) and 8 (b)],

Figure 8. Y Mode in high elastic
anisotropy nematics with posit-
ive dielectric and negative dia-
magnetic anisotropies. H)
acting in the yz plane has stabil-
izing action at general a. The
reduced electric Y threshold
(RE ) and stabilizing magnetic
strength (rH ) are de® ned in § 5.7;
QP is the dimensionless wave
vector. k12=10 in (a ± d ). Curves
are drawn for a = ( 1 ) 1´56,

( 2 ) 1´54, ( 3 ) 1´5 rad in (a, b) and
for a= ( 1 ) 0´78, ( 2 ) 0´39,

( 3 ) 0´01 rad in (c, d ) . rC is in
the rH at which the Y Mode
and HD thresholds are equal.
Plots of rC versus a for k12=
(e) 10, ( f ) 15. Y and HD mark,
respectively, the regions of
existence of these distortions.
The r̀e-entrant’ occurrence of
HD at moderately strong H)
should be noted.
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194 U. D. Kini

e� ective electric splay threshold, Es :

RE=
Ezo

Es
; E

2
s =Õ

K1p
3

eA h
2 .

Figures 10 (a) and 10 (b) show the variation of thresh-
old parameters with RE at three a values close to p/2
for one material. The Y Mode is quenched when the
stabilizing electric ® eld strength is strong enough. Even
a small variation of magnetic tilt from p/2 causes the
Y Mode to disappear at low RE . But the RE necessary
to quench the Y Mode is in® nite at exactly a =p/2
(§ 5.5 ). At a =p/2, QP remains unchanged and rH<1 at
all RE . Results for a variation support the above conclu-
sions (these are not shown). The cut-o� value of a

necessary to quench the Y Mode decreases (i.e. the a

range of the Y Mode expands) when k12 is increased at
a given RE . With k12 ® xed, the Y Mode is quenched at a
higher a when RE is increased.

Figures 10 (c) and 10 (d ) contain phase diagrams for
Figure 9. Details as in ® gure 8 except that RE and QP are two materials. Increase of k12 widens the region of

functions of magnetic tilt, a (see § 5.7). The existence of existence of the Y Mode in the RE ± a plane. These
the re-entrant HD depends critically on k12 and rH . In diagrams should be compared with curve 1 of ® gure
(a, b) , the reduced stabilizing magnetic strength, rH =4´5

3 (b) (which is drawn for a material with positive suscepti-and k12= (1 ) 16, (2 ) 14, (3 ) 13. In (c, d ), k12=10 and rH=
bility anisotropies with Eo impressed along x and H) in( 1 ) 2, ( 2 ) 3, ( 3 ) 4.
the yz plane). The shapes of the two phase boundaries

over the entire a range. At lower k12 , the re-entrant HD
appears; the lower the k12 , the wider the range of HD.
For a given material, ® gures 9 (c) and 9 (d ) , increase in
rH causes the appearance of HD in the intermediate a

range. At each point, the change between HD and the
Y Mode occurs discontinuously. When k12 is su� ciently
low or rH high enough (curves 3), the Y Mode does not
even exist as a solution in the intermediate a range.

5.8. Y Mode in a material with eA<0 and xA>0; H) in
the yz plane

As seen from § 5.5, Eo acting along z cannot suppress
the Y Mode in a material with k12>kC ; the Y Mode is
also described by deformations with pure spatial sym-
metry. If H) is directed along y, HD sets in above the
twist magnetic threshold with Eo having no e� ect on w.

Hence, the Y Mode should be suppressed if a is dimin-
ished su� ciently from p/2. At general a, the Y Mode
perturbations do not have pure spatial symmetry and Figure 10. Y Mode in high elastic anisotropy nematic with
the solution is e� ected as in § 5.7. The transition between negative dielectric and positive diamagnetic anisotropies.

k12=10; the reduced magnetic Y threshold rH and thethe Y Mode and HD is discontinuous with respect to
reduced stabilizing electric strength RE are de® ned in § 5.8.QP . Due to the direct coupling of Eo with h, the value
In (a) and (b) , curves are drawn for a = ( 1 ) 1´56, ( 2 ) 1´54,of a demarcating the phase boundary will depend on
( 3 ) 1´52 rad. In (c) and (d ) , the critical RE necessary to

Ezo . HF of equation (32) is used to de® ne the reduced quench the Y Mode is plotted as a function of a for two
magnetic Y threshold rH=H)/HF ; the reduced stabiliz- materials with k12= (c) 10, (d ) 15. Compare (c) or (d ) with

curve 1 of ® gure 3 (b) .ing electric ® eld strength is de® ned in terms of the
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195Periodic deformations in planar oriented nematics

are similar except that one is obtained from the other minimum. This is clear from the governing equations as
y ,x is the only electric perturbation entering the torquethrough a re¯ ection in a vertical line.
equations. In a material with eA>0, y ,x has only a

6. PD under E applied along y stabilizing in¯ uence. Even for eA<0, the destabilizing
This con® guration is similar to that studied in § 2± § 4 e� ect of y ,x is not strong as y ,x is out of phase with w

except that the electrodes are assumed to be at y =Ô g along x, the direction of periodicity. Hence, neither the
with 2g&2h. In the absence of deformation, X nor the XY Modes are studied here.

Eo=(0, Eyo , 0 ); Eyo=VY /2g.
6.1. Y Mode in materials with eA<0 and xA>0

Under distortion, n and E are again given by equation When H) acts along z, HD involves only h and occurs
(1). In (3), the ® rst term is replaced by eA Eyow ,x . In (2), at the splay FreÂ edericksz threshold, HS . As h does not
fE is rede® ned to be couple with Eo , the HD threshold is independent of Eyo .

In materials with high elastic anisotropy, the Y Mode
(SOLUTION 1) can set in if k12>kC of equation (29).fE=

eAEyo

4p
wy ,x Õ

eA E
2
yo

8p
w

2
;

In the present case, Eo has a stabilizing in¯ uence on w

and exerts no direct torque on h. The governing equa-in (4), U
h

vanishes and in (5),
tions can be recast into the form (26) with rN replaced
by RE whereU

w
=

eA E
2
yo

4p
w Õ

eA Eyo

4p
y ,x .

Rigid anchoring hypothesis is assumed. When perturba-
tions depend only on z, y becomes decoupled from h

RE=
Eyo

ET
; ET=

p

2h A Õ
4pK2

eA B
1/2

;

f=ApH)
2HS B2

; HS=
p

2h AK1

xAB 1/2

.
and w. In a material with eA<0 and xA>0, the magnetic
HD threshold is

Clearly, ET is the equivalent electric twist FreÂ ederickszH
2
G=

K1p
2
(K2p

3 Õ eA h
2
E

2
yo)

4xA h
2[p

3
(K1 C

2

a+K2S
2

a
) Õ eA h

2
E

2
yoS

2

a
]

. (33)
threshold. Plots of threshold parameters as functions of
RE are similar to those in ® gures 7 (a) and 7 (b). TheWhen H) acts along z, w becomes damped out. As Eo
phase boundary is de® ned by (28), ® gure 7 (c), whereacts along y, h is coupled only to H) so that (33) reduces
REC replaces rNC .to the magnetic splay threshold. When a =0, h damps

With H) in the yz plane, the results are more inter-out and
esting. The Y Mode is now a superposition of
SOLUTIONs 1 and 2. The reduced Y threshold, rH=

H
2
G(a =0 )=

K2

xA h
2A p

2

4
Õ

eA h
2
E

2
yo

4pK2 B ,
H)/HG , is de® ned in terms of HG , equation (33), while
the reduced stabilizing electric ® eld, RE , is de® ned in

with a twist appearing under the stabilizing action of Eo terms of ET as above. The material chosen has k12 =10.
and destabilizing action of H). In the absence of Eo , the Y Mode is suppressed if a <aC ;

In a material with xA<0 and eA>0, the electric HD
aC#1´27 rad. When Eyo is increased from zero, the

threshold is Y Mode is quenched at su� ciently high RE [® gures
11 (a ± d )] . Regardless of a, the Y Mode is quenched at

E
2
G =

p
3[K1K2p

2 Õ 4xA h
2
H

2
)(K1C

2

a+K2 S
2

a
)]

eA h
2
(K1p

2 Õ 4xA h
2
H

2
)S

2

a
)

. the same RE . In the low RE range, however, increase of
RE actually appears to favour the Y Mode with rH(34)
decreasing and QP increasing. This variation becomes

When a =p/2, h gets decoupled from w and (34) reduces pronounced when a >aC [® gures 11 (c) and 11 (d )] .
to the electric twist threshold. When H) is directed Although HD prevails at low RE , the subsequent
along y, a twist distortion appears above the threshold decrease in rH actually causes the Y Mode to make a

r̀e-entrant’ appearance before being quenched again.
E

2
G(a =0 )=

4pK2

eA h
2 Ap

2

4
Õ

xA h
2
H

2
)

K2 B A possible reason for this is that h does not get
in¯ uenced directly by the stabilizing action of Eo . When
Eyo is high enough, the damping it imposes on w isunder the joint actions of stabilizing H) and

destabilizing Eo . su� cient to quench the Y Mode even though h is not
directly a� ected by Eo . When Eyo is low, however, itsOut of the three PD Modes, the Y Mode does not

involve y . The X Mode can be shown not to exist in stabilizing in¯ uence on w may be partly overcome by
H) provided that H) acts su� ciently close to y. At lowmaterials with k12 >1 as the neutral stability curve

increases continuously with wave vector, exhibiting no a, H) also exerts a weak destabilizing torque which may
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196 U. D. Kini

diminishes. The transition between the Y Mode and HD
is discontinuous but the degree of discontinuity becomes
less when RE is high enough [compare ® gures 12 (a) and
12 (b) with 12 (c) and 12 (d )]. The transition points also
come closer when RE is su� ciently high [® gures 12 (c)

and 12 (d )].

Not surprisingly, the phase boundary takes the form
shown in ® gure 12 (e) and 12 ( f ) , bearing a striking
resemblance to the phase boundaries derived elsewhere
for a homeotropic sample (see ® gure 1 of [21]; a
re¯ ection in the a axis is needed before comparison) as
well as some in this work [see ® gures 8 (e) and 8 ( f )].

The higher the k12 , the wider the region of existence of
the Y Mode. The vertical intersection of the phase
boundary with the a axis occurs at aC for the given
material; the phase boundary again becomes vertical at
ao<aC . By drawing vertical lines at di� erent a, three
distinct regions can be recognized: at p/2>a >aC , the
Y Mode exists at low RE and is quenched when RE

takes su� ciently high values; at ao <a<aC , the Y Mode
Figure 11. Plots of Y Mode threshold parameters in a mat- appears re-entrantly between HD; at 0 <a <ao , only

erial with eA<0 and xA>0. Eo along y has a stabilizing HD prevails.in¯ uence while H) in the yz plane destabilizes no . k12=
10. The dimensionless Y threshold, rH and the reduced
electric strength, RE are de® ned in § 6.1. In (a) and (b) ,

7. Conclusionscurves are drawn for a = ( 1 ) 1´57, ( 2 ) 1´35 rad. In (c) and
Static PD thresholds have been studied when H and(d ) , a= ( 1 ) 1´2, ( 2 ) 1´1 rad. An increase in RE causes the

Y Mode to appear in the r̀e-entrant’ way (c, d ) . At Eo act simultaneously on a planar nematic sample with
su� ciently high RE, the Y Mode is quenched. no along x ; the direction of periodicity is along x

(X Mode) or along y (Y Mode). In the main, the rigid
anchoring hypothesis has been utilized, along with linearhelp h to develop. As h is not directly damped by Eo ,

the Y Mode may actually show a revival. The a variation perturbation analysis; in one case, the anchoring is
assumed to be weak. Choice of di� erent susceptibility( ® gure 12) complements the results of ® gure 11 and

also indicates the shape of the phase boundary. As anisotropies as well as symmetry directions for Eo leads
to a variety of phase diagrams for the distortions.RE increases, the a necessary to quench the Y Mode

Figure 12. Details as in ® gure 11
except that the magnetic angle
a is varied. In (a) and (b) , RE=
( 1) 1, (2) 2, (3 ) 3. In (c) and (d ),

RE= (1 ) 4, (2) 5, (3 ) 6. This
clearly indicates the shape of
the phase boundary between
HD and the Y Mode. Phase
diagrams are drawn for k12=
(e) 4, ( f ) 6. Compare with phase
boundaries in ® gure 1 of refer-
ence [21] as well as those in
® gures 8 (e) and 8 ( f ) (see also
§ 6.1 ).
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197Periodic deformations in planar oriented nematics

Flexoelectricity is generally neglected but a qualitative discussed below with examples from ® gures 1 (a) and
1 (b) of § 3.1.discussion of its possible e� ect is given in one case. The

main conclusions are the following.
(i ) When the stabilizing Eo is weak, only the mag-

Given that Eo is along x, parallel to no ; and H) in
netic HD threshold is relevant in 5CB; the X and

the yz plane makes angle a with y ; the material is 5CB
Y thresholds do not exist. Even if HD appears at

with eA , xA>0. Both PD Modes appear because of
the linear threshold, further increase of H) causes

destabilizing torques arising from electric perturbations.
HD to develop as a non-linear deformation. The

If Eo is strong enough, the Y Mode is favourable with
non-linear HD may undergo instability against

H) acting along z [® gures 1 (a) and 1 (b)] . If H) is
periodic perturbations when H) is high enough.

rotated towards y, the X Mode sets in causing a discon-
Such an instability would be analogous to the

tinuous change in the periodicity wave vector [® gures
one studied in [7].

1 (c) , 1 (d ) and 2)]; further rotation of H) quenches the
(ii) The true XY Mode linear threshold does not

X Mode in favour of HD. These e� ects arise due to an
exist in any of the examples studied in this work.

increase in the asymmetry of the perturbations. If Eo is
The possibility exists, however, that the XY Mode

weak enough, only HD prevails, regardless of the mag-
might occur due to the destabilization of one of

netic angle [® gure 3 (a)] . The results are substantially
the other deformations. When Eo is strong

unchanged for a material with high elastic anisotropy
enough, the Y Mode should develop above a

except that the Y Mode now prevails even when Eo is
magnetic threshold. If H) is raised above the

absent [® gures 1 (a) , 1 (b) and 3 (b)]; in particular, the
Y threshold, the Y Mode develops into a non-

Y Mode is never quenched by a strong, stabilizing Eo .
linear distortion which may undergo instability

Weakening of the azimuthal anchoring encourages the
to result in the XY Mode.

formation of the Y Mode in thin samples ( ® gures 4 and
( iii ) As per equation (10), 5CB has xA>0 and the

5); the presence of K24 has a similar e� ect when Eo is
stable orientation of n is one parallel to H). Even

weak ( ® gure 6).
if a stabilizing Eo acts, it is possible that n in a

Sections 5 and 6 deal with the Y Mode in high elastic
large portion of the sample will align along H)anisotropy materials with Eo acting along z or y. In
if H) is high enough. Suppose the Y Mode

both cases, the Y Mode distortions do not perturb Eo .
develops at the Y threshold. Increase of H) to a

When susceptibility anisotropies are both positive (§ 5.2 ),
high value should cause alignment of n by H)the Y Mode induced by Eo acting along z can be
leading to a disappearance of the stripes. This

suppressed by a stabilizing H
d

impressed along x (com-
non-linear e� ect has been observed in a nematic

pare ® gure 7 with ® gure 1). When susceptibility aniso-
having high elastic anisotropy [6], but with

tropies have opposite signs and H) acts along a
Eo absent.

symmetry direction, results for the Y Mode can be
deduced by simply comparing the forms of governing The thresholds studied in this work describe the

change from the undistorted alignment, no , to a deformedequations with those of § 5.2 (see § 5.3± § 5.5 ). When H)
acts in the yz plane, the phase boundaries between HD state. The perturbations imposed are mathematical; the

governing equations do not have driving terms whichand the Y Mode bear remarkable shape similarity in
di� erent cases except that the diagrams have to be cause the perturbations. These assumptions may be

realistic in a thin sample when Eo acts normal to there¯ ected in a suitable mirror before being brought into
qualitative superposition with each other. For example, plates (§ 5) and the e� ects of the lateral edges of the

sample are insigni® cant. When Eo acts in the samplecompare ® gure 3 (b) (curve 1) with ® gure 10 (c) or 10 (d ) ;

also compare ® gures 8 (e) and 8 ( f ) with ® gures 12 (e) plane, the inter-electrode gap may not be large compared
with the sample thickness. Studies on the homeotropicand 12 ( f ) .

The results of this work must be interpreted strictly con® guration show [31] that a thresholdless distortion
develops even in the a.c. case due to thermal ¯ uctuationswithin the framework of the linear perturbation hypo-

thesis which leads to the solution of an eigenvalue as well as inhomogeneity in E (this causes ® eld induced
biaxiality [17]). Similar e� ects may also occur in theproblem in every case, so that the actual values of the

perturbation amplitudes are not known. Hence, quan- planar con® guration.
Flexoelectricity has been neglected in this work. Thistitative deduction of post-threshold phenomena is

impossible. When a threshold is optically detected, the limitation has to be seen in conjunction with the use of
only the s̀oft’ boundary condition for y in § 3 and § 4.accompanying deformation is already non-linear. This

must be borne in mind while comparing observed As ¯ exoelectricity is a polar e� ect, scaling with respect
to sample thickness may not be complete even with thethreshold parameters with their theoretical counterparts.

Some possibilities connected with non-linear e� ects are rigid anchoring hypothesis. The mixing of solutions with
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198 U. D. Kini

pure spatial symmetry caused by ¯ exoelectricity may makes the perturbations more asymmetric. Then, PD
with x modulation (analogue of the X Mode) appearshave considerable in¯ uence on the linear thresholds in

a thin sample. As indicated earlier (§ 4.3 ), the study of to be more favourable; this PD Mode has a wave vector
that can vary continuously with parameters.PD thresholds in the presence of a d.c. electric ® eld falls

outside the scope of this work. The thresholdless HD
that develops, as well as its subsequent instability under Appendix
periodic perturbations, has to be studied along the lines We assume that electrical conductivity exists in the
of [19] taking into account electric perturbations. rigidly anchored nematic for the con® guration of § 2 and
Attempts must also be made to incorporate the full set § 3.1 with Eo acting along x and H) acting along z (a =
of boundary conditions for E. The nematic is assumed p/2). The principal conductivities are S

d
and S) with

to be an insulator. A real nematic used in an experiment the anisotropy SA=S
d
Õ S). In the absence of per-

generally has non-zero electrical conductivity whose turbations, the current density S
d
Exo exists along x.

anisotropy may lead to convective PD [3, 4, 14] and Under perturbation, the current density deviates away
not the static PD studied in this work. Interesting results from x ; the torque equations (4) and (5) remain but (3)
have been obtained for conducting nematics under the is not valid as div D =4pr where r is the free charge
tacit assumption of static equilibrium [9]. As an density. A study of the perturbations in equilibrium is
example, a static PD threshold is shown to exist in a possible by ignoring rExo , the body force density along
conducting nematic under appropriate assumptions in x; this assumption may be valid in some materials if Exo
one con® guration (see the Appendix). is not very high. Then, equation (3) is replaced by the

Apart from experiments to detect the static PD thresh- static limit of the equation of continuity,
olds, those involving dynamic e� ects may prove inter-

SA Exo (w,y+h,z ) Õ S
d
y ,xx Õ S)(y ,yy+y ,zz) =0.esting. For instance, the application of a strong

(A1)destabilizing ® eld is known to lead to a variety of
transient periodic dissipative structures [32]. The con- As glass is an insulator, the z component of the perturbed
® guration of § 3 and § 4 should prove interesting in this current density should vanish [29]. As h and w also
regard. Experiments with rotating magnetic ® elds have vanish at the boundaries, the condition (9) is recovered.
led to the discovery of a number of novel patterns in For the sake of illustration, consider the X Mode.
the homeotropic geometry [33]. As shown in § 3, the Following the procedure of § 3.1, the neutral stability
nature of static PD changes when the tilt of H) is curve for SOLUTION 1 is found to be given by equation
changed in a plane normal to no ; it should be interesting (12) with the rede® nitions
to investigate the resulting deformation when H) is
rotated with some angular velocity.

b1=
S
d

S)
; vE=

eA S
d
E

2
xoh

2

4pK1S)
. (A2)

The work of [27] concerns nematics with defects
con® ned to cylindrical cavities. PD in uniformly aligned

When Qx vanishes, one recovers the expression for HFground states has been theoretically studied [34] with
(11) with the new de® nition for vE . The X Mode isthe nematic con® ned to the annular space between two
found to exist as a solution with threshold lower thanlong coaxial cylinders. The results are similar to those
that of HD only ifobtained for a ¯ at sample when the ratio of the cylinder

radii is close to unity (i.e. when the sample thickness is
Exo >E3 ; E

2
3=

p
3
K3S

2
)

h
2
S
d
SAeA

. (A3)small compared with the average radius) except that the
wave vector (related to the number of domains) may be
quantized for some PD Modes. With the invention of A necessary condition for E3 (and also the X Mode) to

exist is that eA SA>0. The reduced electric ® eld is nowtechniques to impart speci® c director alignment on
cylindrical surfaces [35], controlled experiments on de® ned as RE=Exo /E3 . Computation is done by choos-

ing an appropriate value for S
d
/S). The solution forcylindrical geometry appear feasible. Several results of

[20, 21] as well as those of § 3 and § 4 have theoretical the Y Mode proceeds as in § 3.1; the Y Mode is found
to be uniformly more favourable than the X Mode forequivalents in cylindrical geometry [36]. The results of

§ 3 can be extended to no and Eo along x, the cylinder H) directed along z. The variation of threshold para-
meters with RE and a, as well as the phase boundaries,axis, and a radial magnetic ® eld. It appears [36] that

PD with azimuthal modulation (analogue of the are very similar to those contained in ® gures 1 ± 3. With
decrease of a from p/2, the wave vector changes discon-Y Mode) may set in when the ratio of radii is close to

unity. As the sample is closed with respect to the tinuously from y modulation to x modulation; when a

is low enough, the X Mode also becomes quenched andazimuthal variable, the wave vector for azimuthal modu-
lation is quantized. An increase of sample curvature only HD exists.
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